What makes a bacterial species able to cause human disease?

February 18, 2016, University of California - San Diego
What makes a bacterial species able to cause human disease?
A scanning electron micrograph of Leptospira sp. Bacteria. Credit: Centers for Disease Control

An international team of scientists, led by researchers at University of California, San Diego School of Medicine and the J. Craig Venter Institute (JCVI), have created the first comprehensive, cross-species genomic comparison of all 20 known species of Leptospira, a bacterial genus that can cause disease and death in livestock and other domesticated mammals, wildlife and humans.

The findings are published in the February 18 online issue of PLOS Neglected Tropical Diseases. The resulting analyses reveal novel adaptations and traits in infectious species of Leptospira that not only help illuminate its evolutionary history, but may also provide new preventive and treatment approaches. The data comes from representative Leptospira strains obtained from four international labs and isolated from 12 countries. The work involved researchers at Yale University, UCLA, Cornell University and institutions in Australia, France, England, The Netherlands, Canada, Uruguay, Brazil, Peru and Thailand.

"Leptospira is the most complex genus of bacteria that infects humans," said Joseph M. Vinetz, MD, professor of medicine and director of the UC San Diego Center for Tropical Medicine and Travelers Health. "This work compares the complete genome sequences of all known species of Leptospira to discover which genes make this bacterium a pathogen. It provides a roadmap for future research, including finding new ways to diagnose infection and vaccine development."

This project was initiated and led by first author Derrick Fouts, PhD, JCVI associate professor. "The bioinformatics tools have matured to the point that we can now find the proverbial 'needle in a haystack,' meaning we can now identify genes and pathways that are unique to pathogenic microbes, which will focus future research efforts on these key pathogen-specific features," Fouts said.

JCVI president Karen E. Nelson, PhD, who helped coordinate the initial phase of the project points out that the success of this study was based, in part, on the dedication and excitement of the Leptospira research community. "The comprehensive nature of this study serves as a model for emerging infectious diseases."

Some species of Leptospira are non-infectious, deriving nourishment from dead or decaying organic matter. Other species are infectious with different, sometimes dire, consequences. In infected rats and mice, for example, the bacterium colonizes in the kidneys, but does not produce disease symptoms. In livestock, such as cattle, sheep, horses and pigs, and companion animals, such as dogs, leptospirosis may cause acute kidney, liver and lung damage and provoke fetal loss.

Humans can become infected with leptospirosis in ways similar to animals, through direct contact or ingestion or inhalation of contaminated water or soil. Humans are also vulnerable through direct contact with the urine of infected animals.

In infected humans, the disease provokes a range of effects. It may result in asymptomatic infection, mild, flu-like symptoms or jaundice, or lead to severe damage of the liver, kidney or central nervous system - and death. Globally, leptospirosis is the most important bacterial disease transmitted from animals to humans, with more than 1 million cases annually and 60,000 deaths.

Examples of Leptospira pathogen-specific features identified in the PLOS study include:

  • Discovery of proteins unique to pathogenic Leptospira that will accelerate vaccine development in humans, dogs, and livestock
  • Key adaptations of infectious Leptospira to mammals, such as biosynthesis of sialic acid, a type of sugar that allows these organisms to hide within the body so as to avoid destruction and which allows disease to progress
  • Infectious Leptospira evolutionarily acquired the ability to synthesize vitamin B12 from a simple amino acid precursor, which non-infectious Leptospira cannot

"One fascinating finding was discovering the CRISPR-Cas genetic machinery only in pathogenic Leptospira, but not in the intermediate or non-infectious groups of the genus. The evolutionary acquisition of novel CRISPR elements, which are only in pathogenic Leptospira, probably hastened adaptation to human infection. The significance of this observation remains to be explored," said Vinetz.

CRISPR-Cas is a molecular immune system that confers resistance to foreign genetic elements, and provides a form of acquired immunity. Recent biotechnological advances have made it possible to alter the germline of many species, including mammals and disease-carrying mosquitoes, through CRISPR.

Vinetz said the next step will be to begin exploiting the genomic information "for vaccine and diagnostics development, experimental approaches to understanding mechanisms of disease pathogenesis and how Leptospira persist in the environment, all critical for developing new public health interventions aimed at reducing the global impact of this important but neglected zoonotic disease."

Explore further: Potentially serious pathogens found in feral cats on Christmas Island

More information: PLOS Neglected Tropical Diseases, dx.doi.org/10.1371/journal.pntd.0004403

Related Stories

New species of infectious disease found in Amazon

April 2, 2008

While investigating the tropical disease leptospirosis in the Peruvian Amazon, an infectious disease specialist from the University of California, San Diego School of Medicine has uncovered new, emerging bacteria that may ...

Urban slum conditions are a source of leptospirosis

April 23, 2008

A study conducted in an urban slum setting in Salvador, Brazil has found that open sewers, accumulations of refuse, and inadequate floodwater drainage are acting as sources for transmission of the disease leptospirosis. ...

Bacterial slime helps cause serious disease

May 5, 2008

Leptospirosis is a serious but neglected emerging disease that infects humans through contaminated water. Now research published in the May issue of the journal Microbiology shows for the first time how bacteria that cause ...

Bacterial disease outbreak threatens metro Detroit animals

October 28, 2011

More than 20 cases of the life-threatening bacterial infection leptospirosis have been reported in Detroit-area dogs in the past three weeks, according to Michigan State University’s Diagnostic Center for Population ...

Recommended for you

Floodplain forests under threat

March 19, 2019

A team from the Institute of Forest Sciences at the University of Freiburg shows that the extraction of ground water for industry and households is increasingly damaging floodplain forests in Europe given the increasing intensity ...

Scientists discover common blueprint for protein antibiotics

March 19, 2019

A discovery by researchers at the Los Angeles Biomedical Research Institute (LA BioMed) has uncovered a common blueprint for proteins that have antimicrobial properties. This finding opens the door to design and development ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 18, 2016
Such fantastic work...but I can't help but feel the authors have missed a potentially interesting observation.

The final author states: "One fascinating finding was discovering the CRISPR-Cas genetic machinery only in pathogenic Leptospira, but not in the intermediate or non-infectious groups of the genus. The evolutionary acquisition of novel CRISPR elements, which are only in pathogenic Leptospira, probably hastened adaptation to human infection."

But he appears to miss the role of protective role of bacteriophages within the human body - the bacteriophage adherence to mucus (BAM) model - as outlined by Jeremy Barr and colleagues:

The main role of CRISPR-Cas is to protect bacteria from bacteriophages.
So if CRISPR-Cas allows Leptospira to become pathogenic to humans - by conferring protection from our beneficial phages - wouldn't it be interesting to compare other groups of human pathogenic bacteria for this function?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.