A new way of fighting bacteria?

February 22, 2016

In bacteria, toxin-antitoxin systems consist of a set of two closely linked genes. Situated on the same chromosome, they encode both a protein 'poison' and a counteracting 'antidote'. Under normal conditions, the antitoxin protein binds the toxin protein and prevents it from acting. But in response to environmental stress, the antitoxin proteins are broken down, which allows the toxins to poison the cells. Microbiologists at the University of Geneva (UNIGE), Switzerland, studied the toxin-antitoxin system HigBA, which can be found in many pathogenic and non-pathogenic bacteria, and found a novel regulatory mechanism. When acting on the toxin, this mechanism works like a "suicide button" that kills the cell. This discovery could open the door to potential new treatments of bacterial infections. The results is published in Nature Microbiology.

For quite a while, scientists have been evaluating the possibility of using toxin- systems as a means to fight bacterial infections. But depending on the toxins involved, activation may either kill the bacteria or put it in a dormant state in which they become persistent to antibiotics. When bacterial cells awake from hibernation at the end of the antibiotic treatment they are more agressive and tougher than ever. Toxin activation, while potentially useful, is a tool that must be used with great caution since it can be also be induced by certain antibiotics.

Patrick Viollier and his team from the UNIGE Faculty of Medicine have been studying the bacterium Caulobacter crescentus, and have singled out the toxin-antitoxin system HigBA. Today, they are able to explain why this particular toxin-antitoxin system may be a powerful weapon against bacterial infections. "Normally, toxin activation puts the cells into hibernation by shutting down their basic functions, allowing them to reactivate later on", explains Clare Kirkpatrick, first author of this study. "HigBA, on the contrary, is highly specific both in its activation conditions and its response. It is dedicated exclusively to the DNA damage response in these bacteria and attacks a small set of essential targets in the cell, leading to inescapable cell death."

Fighting bacteria with their own weapons

In most cases, it is impossible to artificially inactivate the antitoxin gene. But thanks to the unique mechanism of gene regulation in this system, the UNIGE scientists managed to do so. Indeed, HigBA is regulated in a very unusual way. Gene expression is regulated by DNA binding proteins known as "", which can either activate or repress gene expression. In the family of toxin-antitoxin systems to which HigBA belongs, the antitoxin is also a repressive transcription factor, which prevents the toxin and antitoxin genes from being expressed.

Typically, the antitoxin is the only transcription factor that regulates toxin and antitoxin expression. The HigBA system, however, is also regulated by a DNA damage-responsive transcription factor, capable of much more strict repression than the antitoxin. This regulation is what permits the mutation of the antitoxin gene since it is still repressed by the other transcription factor, at least when there is no DNA damage: instead of responding to general stress, it only responds to DNA damage stress. "Unexpectedly, we found that HigBA acts like a highly specific "suicide button" for when the bacteria are suffering from DNA damage, such as can be caused by antibiotics", adds Clare Kirkpatrick.

HigBA toxin-antitoxin system can be found in many bacteria. This very specific mechanism is most probably wide-spread, too. Knowing this, strategies to activate or block the toxin can be imagined. "Our discovery can change the way we fight bacterial infection. Instead of using chemical warfare, i.e. antibiotic unspecfically, we could force bacteria to turn their weapons on themselves by treating bacteria with selected combinations of antibiotics," concludes Patrick Viollier.

Explore further: Suicidal bacteria: Biologists study unicellular organisms that occasionally poison themselves with a toxin

More information: Growth control switch by a DNA damage-inducible toxin-antitoxin system in Caulobacter crescentus, Nature Microbiology, DOI: 10.1038/nmicrobiol.2016.8

Related Stories

FIC proteins send bacteria into hibernation

August 20, 2015

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue ...

Turning bacteria against themselves

February 8, 2011

Bacteria often attack with toxins designed to hijack or even kill host cells. To avoid self-destruction, bacteria have ways of protecting themselves from their own toxins.

Bacteria pack their own demise

July 30, 2009

Numerous pathogens contain an 'internal time bomb', a deadly mechanism that can be used against them. After years of work, VIB researchers at the Vrije Universiteit Brussel (VUB) were able to determine the structure and operating ...

Bacteria poison themselves from within

March 23, 2011

(PhysOrg.com) -- The research group led by Anton Meinhart at the Max Planck Institute for Medical Research in Heidelberg has shown that proteins from the zeta toxin group trigger a self-destructive mechanism in bacteria. ...

Recommended for you

Many more bacteria have electrically conducting filaments

December 8, 2017

Microbiologists led by Derek Lovley at the University of Massachusetts Amherst, who is internationally known for having discovered electrically conducting microfilaments or "nanowires" in the bacterium Geobacter, announce ...

The future of crop engineering 

December 8, 2017

Photosynthesis is the process underlying all plant growth. Scientists aim to boost photosynthesis to meet the increasing global demand for food by engineering its key enzyme Rubisco. Now, researchers at the Max Planck Institute ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.