'Superdeep' diamonds provide new insight into earth's carbon cycle

January 8, 2016, University of Bristol

Researchers at the University of Bristol have discovered new insights into previously hidden parts of the earth's carbon cycle. The team found that carbon recycling extends into the deep mantle by plate subduction, but is still primarily constrained to upper mantle depths, above 700km. The researchers made the discovery that certain rare diamonds are formed when carbon that was sequestered from seawater into the Earth's shifting tectonic plates reacts with the mantle after the plate is subducted – a process by which it moves under another tectonic plate and sinks into the mantle as the plates converge.

Their research, 'Slab melting as a barrier to deep carbon subduction' is published in this week's edition of Nature.

Professor Mike Walter from the School of Earth Sciences said: 'Understanding the is of particular interest, as carbon is a crucial building block for life, while in the form of atmospheric CO2 it strongly contributes to the greenhouse effect.

'Despite the widespread understanding that carbon recycling into the Earth's interior during subduction has altered the Earth's surface carbon budget over geological time, the ultimate fate of recycled carbon remains a conundrum, but one which experimental petrologists can address in the laboratory by simulating the different environments inside our planet.'

The researchers experimented on very small samples of synthetic rock at high pressures and temperatures. This allowed them to determine the conditions at which subducting slabs would undergo melting as they pass through the upper mantle. By comparing the measured melting behaviour with models of subducting slab temperatures, they showed that almost all slabs are expected to release the majority of their carbon in a melt between about 300 and 700 km depth.

In addition, by experimentally reacting the released melts with ambient mantle, they reproduced the unique mineral makeup that is observed as inclusions in natural 'superdeep' diamonds, which originate from depths beyond 250km. This provides not only a plausible explanation for the formation of these unique samples, but also demonstrates that superdeep diamonds are a snapshot of the deepest portions of the Earth's cycle, making them an invaluable tool for better understanding the interior of our planet.

Dr Andrew Thomson said "One of the most amazing ideas that comes from this work is that superdeep diamonds are like marathon runners that have just crossed the finish line. The difference in this case is the diamonds have just completed one of the most mind baffling journeys possible, from the ocean floor to around 700 km depth and back to the surface. Fortunately for scientists, their mineral inclusions are like stopwatches recording the entire journey, and with further work we will hopefully reveal many more remarkable secrets about their epic journey.'

Dr Simon Kohn said: 'Superdeep diamonds hold great potential for future research on the Earth's volatile cycles, and we now know much more about the fundamental process that forms them. We will be able to use the wealth of information that is trapped inside the diamonds to build a detailed picture of processes occurring hundreds of kilometres beneath our feet."

Dr Richard Brooker said: 'The thin crust that makes up the dynamic covering the Earth's surface is relatively exotic compared to the bulk planet composition, and represents a high concentration of many elements important to life on earth, but it continually recycles back into the vast mantle where it become re-diluted to varying degrees over time. However, mixing is not perfect and isolated traces of the subducted crust components remain like fingerprints, which have long been recognised in the magmas (and indeed diamonds) that arrive back at the Earth's surface. The carbonate-rich melts discovered in this study may potentially be responsible for a specific chemical fingerprints that is repeatedly seen in multiple unrelated global locations.'

Explore further: Scientists make new estimates of the deep carbon cycle

More information: Andrew R. Thomson et al. Slab melting as a barrier to deep carbon subduction, Nature (2016). DOI: 10.1038/nature16174

Related Stories

Scientists make new estimates of the deep carbon cycle

June 19, 2015

Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans, and atmospheres—has gradually increased, scientists reported this month in the journal Proceedings ...

Diamonds show depth extent of Earth's carbon cycle

September 15, 2011

Scientists have speculated for some time that the Earth's carbon cycle extends deep into the planet's interior, but until now there has been no direct evidence. The mantle–Earth's thickest layer –is largely inaccessible. ...

Deep-earth carbon offers clues on origin of life on Earth

November 20, 2014

New findings by a Johns Hopkins University-led team reveal long unknown details about carbon deep beneath the Earth's surface and suggest ways this subterranean carbon might have influenced the history of life on the planet.

Stretchy slabs found in the deep Earth

November 23, 2015

A new study suggests that the common belief that the Earth's rigid tectonic plates stay strong when they slide under another plate, known as subduction, may not be universal.

Recommended for you

'True polar wander' may have caused ice age

November 19, 2018

Earth's latest ice age may have been caused by changes deep inside the planet. Based on evidence from the Pacific Ocean, including the position of the Hawaiian Islands, Rice University geophysicists have determined Earth ...

Major natural carbon sink may soon become carbon source

November 19, 2018

Until humans can find a way to geoengineer ourselves out of the climate disaster we've created, we must rely on natural carbon sinks, such as oceans and forests, to suck carbon dioxide out of the atmosphere. These ecosystems ...

Greenhouse gasses triggering more changes than we can handle

November 19, 2018

A new study published in Nature Climate Change provides one of the most comprehensive assessments yet of how humanity is being impacted by the simultaneous occurrence of multiple climate hazards strengthened by increasing ...

Local drivers of amplified Arctic warming

November 19, 2018

Long-term observations of surface temperatures show an intensified surface warming in Canada, Siberia, Alaska and in the Arctic Ocean relative to global mean temperature rise. This warming pattern, commonly referred to as ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.