Shiny fish skin inspires nanoscale light reflectors

January 13, 2016
A transmission electron microscope image of ribbonfish skin shows random arrangements of crystalline quinine embedded in cytoplasm (a). The arrangement of crystal layers reflects light across a broad spectrum. The cytoplasm and crystal layers are reproduced in (b) -- red dotted line (5 mm scale bar) and then turned into a fractal pattern with random changes introduced in (c). Credit: Werner Group/Penn State

A nature-inspired method to model the reflection of light from the skin of silvery fish and other organisms may be possible, according to Penn State researchers.

Such a technique may be applicable to developing better broadband reflectors and custom multi-spectral filters for a wide variety of applications, including advanced optical coatings for glass, laser protection, infrared imaging systems, and photovoltaics, according to Douglas Werner, John L. and Genevieve H. McCain Chair Professor in Electrical Engineering, Penn State.

The proposed model also contributes to the understanding of the reflective layering in the skin of some organisms. The shiny skins of certain ribbonfish reflect light across a broad range of wavelengths, giving them a brilliant metallic appearance. The reflectivity is the result of stacked layers of crystalline organic compounds embedded in their skin's cytoplasm. Some organisms with metallic sheens have layers that are stacked in a regular pattern, while others, including the ribbonfish, have stacking described as "chaotic" or random. The Penn State team determined that the stacking is not completely random and developed mathematical algorithms to replicate those patterns in semiconductor materials.

"We are proposing a model that uses geometry to describe the layering in the biological structure of silvery fish," says Jeremy Bossard, postdoctoral researcher in electrical engineering, Penn State. "While we are not trying to reproduce the structure found in nature, the same model could guide the design of devices such as broadband mirrors."

Fractals have been called the "geometry of nature" because they can help describe the irregular but self-similar patterns that occur in natural objects such as branching tree limbs. The researchers use a one-dimensional fractal, known as a Cantor bar fractal, which is a line divided by spaces or gaps. Normally, Cantor fractals appear to be very regular, but when random changes are introduced to the geometry, a more complex pattern emerges. The pattern resembles the layering of reflective layers in ribbonfish skin.

"There is an underlying pattern, but there is randomness built in," says Bossard, "similar to the way that living trees have an overall fractal pattern but do not grow symmetrically."

The researchers then use another nature-inspired computational method called a that mimics Darwinian evolution to create successive generations of fractal patterns from the parent patterns. Over approximately 100 generations, the patterns converge on the best design to meet all the target requirements.

Using these fractal random Cantor bars and the genetic algorithm, the researchers were able to mathematically generate patterns targeting optical functions in the mid-infrared and near-infrared ranges, including broadband reflection. They propose that the design approach could be used to develop nanoscale stacks with customized reflective spectra. The research results are reported in the January 13, 2016 issue of the Journal of the Royal Society Interface in "Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm."

Lan Lin, a recent Ph.D. graduate in , also contributed to the work and performed materials fabrication and characterization for the project.

Explore further: Genetic approach helps design broadband metamaterial

More information: Evolving Random Fractal Cantor Superlattices for the Infrared Using a Genetic Algorithm, Journal of the Royal Society Interface, rsif.royalsocietypublishing.or … .1098/rsif.2015.0975

Related Stories

Genetic approach helps design broadband metamaterial

May 5, 2014

A specially formed material that can provide custom broadband absorption in the infrared can be identified and manufactured using "genetic algorithms," according to Penn State engineers, who say these metamaterials can shield ...

Fractal plumage indicates bird fitness

January 24, 2013

The complexity of the fractal geometry of a bird's plumage reveals its level of fitness, according to a new study published in Proceedings of the Royal Society B today.

Finding the simple patterns in a complex world

December 3, 2014

An ANU mathematician has developed a new way to uncover simple patterns that might underlie apparently complex systems, such as clouds, cracks in materials or the movement of the stockmarket.

Beautiful math of fractals

October 13, 2011

( -- What do mountains, broccoli and the stock market have in common? The answer to that question may best be explained by fractals, the branch of geometry that explains irregular shapes and processes, ranging ...

Atomic fractals in metallic glasses

September 21, 2015

Metallic glasses are very strong and elastic materials that appear with the naked eye to be identical to stainless steel. But metallic glasses differ from ordinary metals in that they are amorphous, lacking an orderly, crystalline ...

Recommended for you

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.