Improving catalysis through nanoconcentrator systems

January 13, 2016
Improving catalysis through nanoconcentrator systems

A group of scientists at the University of Amsterdam (UvA) has developed a new approach in enhancing catalytic performance. In the current issue of Nature Chemistry they present functionalised, self-assembled nanospheres that enable highly efficient catalytic conversion by acting as 'nanocentrators'.

The new catalytic nanosphere concept was inspired by the working principles of natural enzymes. These bind molecules in well-defined pockets close to their active sites, thus introducing a pre-organization organisation that facilitates highly efficient transformations. The researchers mimic this enzymatic behaviour in synthetic nanocontainers that in addition, which can contain very high local catalyst concentrations , which and further enhances the catalytic performance.

Self-assembly

The new nanocontainers are formed by self-assembly: mixing 12 palladium metals and 24 so-called ditopic nitrogen ligands leads to formation of nano-sized spheres. The ligands are modified with guanidinium binding motifs so that the resulting nanocontainers are able to bind sulfonates and carboxylates in their interior. Sulfonate guests are thereby bound much more strongly than carboxylates because of so-called cooperative binding (employing multiple binding sites). The researchers use this to firmly fix the sulfonated gold-based catalyst, while the remaining binding sites are available for the pre-organisation of the carboxylate moieties that are to be converted (the substrates).

Enhanced reaction rates

The working principles of this 'nanoconcentrator' system were established using a gold-catalysed cyclization reaction (shown above). The local high concentration of the metal catalyst combined with the pre-organization of the substrate resulted in dramatically enhanced reaction rates in comparison to common systems where the catalyst and the reactants are not pre-organised but just both dissolved in a solvent. Reaction rates usually increase with catalyst and substrate concentration; however this is generally limited by solubility issues or unfavorable catalyst/reactant ratios. This issue has now been solved by taking advantage of local concentrations in the self-assembled nanoconcentrator.

Widely applicable strategy

Since many existing metal catalysts are utilized with sulfonate groups (generally to make them water soluble), the presented nanoconcentrator system potentially provides a widely applicable general strategy to many different reactions. Furthermore, the researchers established that the encapsulated sulfonate-containing gold catalysts did not (or only slowly) convert neutral (acid) substrates. This provides a starting point for the development of more complex systems with substrate-selective catalysis and base-triggered on/off switching.

Explore further: Chemists create switchable gold catalyst

More information: Qi-Qiang Wang et al. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions, Nature Chemistry (2016). DOI: 10.1038/nchem.2425

Related Stories

Chemists create switchable gold catalyst

September 23, 2015

A gold catalyst whose behaviour can be controlled by the addition of acid or metal ion cofactors has been designed by chemists from the University of Southampton.

Cooperative catalysts offer unique route to alkenes

December 11, 2015

Chemists at Princeton have developed a new chemical method to introduce valuable alkenes into simple hydrocarbon molecules, a transformation known as dehydrogenation, which is found in important processes such as the biosynthesis ...

Breaking reactivity barriers

August 31, 2015

The scope and productivity of an essential palladium-catalyzed coupling reaction that generates complex molecules has been improved thanks to A*STAR research that uses low-reactivity materials.

Recommended for you

Custom-built molecule shows promise as anti-cancer therapy

June 22, 2017

Scientists at the University of Bath funded by Cancer Research UK have custom-built a molecule which stops breast cancer cells from multiplying in laboratory trials, and hope it will eventually lead to a treatment for the ...

How protons move through a fuel cell

June 22, 2017

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ...

Sea sponges stay put with anchors that bend but don't break

June 22, 2017

Sea sponges known as Venus' flower baskets remain fixed to the sea floor with nothing more than an array of thin, hair-like anchors made essentially of glass. It's an important job, and new research suggests that it's the ...

New catalyst paves way for carbon neutral fuel

June 21, 2017

Australian scientists have paved the way for carbon neutral fuel with the development of a new efficient catalyst that converts carbon dioxide (CO2) from the air into synthetic natural gas in a 'clean' process using solar ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.