Imec advances drive current in vertical 3D NAND memory devices

December 8, 2015 by Hanne Degans, IMEC
Typical ID-VG. In0.6Ga0.4As presents improved ID-VG characteristic. Ion/Ioff ratio of 3 order of magnitude is sufficient for typical NAND operation.

At this week's IEEE IEDM conference, nano-electronics research center imec showed for the first time the integration of high mobility InGaAs as a channel material for 3D vertical NAND memory devices formed in the plug (holes) with the diameter down to 45nm. The new channel material improves transconductance (gm) and read current which is crucial to enable further VNAND cost reduction by adding additional layers in 3D vertical architecture.

Non-volatile 3D NAND flash technology is used to overcome the scaling issues in conventional planar NAND , suffering from severe cell to cell interferences and read noise due to aggressively scaled dimensions. However, 3D NAND devices, featuring a poly-Si channel, are characterized by drive current that will linearly decrease with the number of memory layers, which is not sustainable for long-term scaling. This is because the conduction in the poly-silicon channel material is ruled by grain size distribution and hampered by scattering at the grain boundaries and charged defects.

To boost the drive current in the channel, imec replaced the poly-Si channel material with InGaAs through a gate first-channel last approach. The channel was formed by metal organic vapor phase epitaxy (MOVPE) showing good III-V growth selectivity to silicon and holes filling properties down to 45nm. The resulting III-V devices proved to outperform the poly-Si devices in terms of on-state current (ION) and transconductance (gm), without degrading memory characteristics such as programming, erase and endurance.

"We are extremely pleased with these results, as they provide critical knowledge of Flash memory operations with a III-V channel as well as of the III-V interface with the memory stack," stated An Steegen, Senior Vice president Process Technology at imec. "While these results are shown on full channels, they are an important stepping stone to develop industry-compatible macaroni-type III V channels."

Imec's research into advanced memory is performed in cooperation with imec's key partners in its core CMOS programs including Samsung, Micron-Intel, Toshiba-Sandisk, SK Hynix, TSMC, GlobalFoundries.

Explore further: Laser thermal anneal to boost performance of 3-D memory devices

Related Stories

Path towards non-Si devices presented at IEDM 2012

December 12, 2012

At this week's IEEE International Electron Devices Meeting (IEDM 2012), imec addressed key challenges of scaling beyond silicon-channel finFETs. Imec showed that channel mobility can be boosted by growing non-Si channels ...

Ultra-thin hybrid floating gate cell presented at IEDM2012

December 11, 2012

Imec has developed an ultra-thin hybrid floating gate cell with demonstrated functionality. The results, which are presented at this week's 2012 IEEE International Electron Devices Meeting (IEDM, San Francisco, December 10-12, ...

Successors to FinFET for 7nm and beyond

June 17, 2015

At this week's VLSI 2015 Symposium in Kyoto (Japan), imec reported new results on nanowire FETs and quantum-well FinFETs towards post-FinFET multi-gate device solutions.

Imec demonstrates strained germanium finFETs at IEDM 2013

December 11, 2013

At this week's IEEE International Electron Devices Meeting (IEDM 2013), imec reported the first functional strained germanium (Ge) quantum-well channel pMOS FinFETs, fabricated with a Si Fin replacement process on 300mm Si ...

Recommended for you

Earwigs and the art of origami

March 22, 2018

ETH Zurich researchers have developed multifunctional origami structures, which they then fabricated into 4-D printed objects. The design principle mimics the structure of an earwig's wing.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.