Study advances hydrogen production efforts

December 22, 2015
hydrogen
Protium, the most common isotope of hydrogen. Image: Wikipedia.

Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have made advances toward affordable photoelectrochemical (PEC) production of hydrogen.

NREL's scientists took a different approach to the PEC process, which uses solar energy to split into hydrogen and oxygen. The process requires special semiconductors, the PEC materials and catalysts to split the water. Previous work used such as platinum, ruthenium and iridium as catalysts attached to the semiconductors. A large-scale commercial effort using those precious metals wouldn't be cost-effective, however.

The use of cheaper instead of precious metals has been proposed, but these have encountered issues with stability, and were found to have a lifespan shorter than the metal-based catalysts.

Instead, the NREL researchers decided to examine molecular catalysts outside of the liquid solution they are normally studied in to see if they could attach the catalyst directly onto the surface of the semiconductor. They were able to put a layer of titanium dioxide (TiO2) on the surface of the semiconductor and bond the molecular catalyst to the TiO2.

Their work showed molecular catalysts can be as highly active as the precious metal-based catalysts.

Their research, "Water Reduction by a p-GaInP2 Photoelectrode Stabilized by an Amorphous TiO2 Coating and a Molecular Cobalt Catalyst," has been published in Nature Materials. Jing Gu and Yong Yan are lead authors of the paper. Contributors James Young, Nathan Neale and John Turner are all with NREL's Chemistry and Nanoscience Center. Contributor K. Xerxes Steirer is with NREL's Materials Science Center.

Turner points out that although the molecular catalysts aren't as stable as the metal-based catalysts, PEC systems are shut down each evening as the sun sets. That leaves time to regenerate a molecular catalyst.

"Hopefully you would not have to do that every day, but it does point to the fact that low stability but highly active catalysts could be viable candidates as a long-term solution to the scalability issue for PEC water splitting systems," Turner said.

Explore further: Study advances understanding of photoelectrodes

More information: Jing Gu et al. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst, Nature Materials (2015). DOI: 10.1038/nmat4511

Related Stories

Cobalt atoms on graphene a powerful combo

October 21, 2015

Graphene doped with nitrogen and augmented with cobalt atoms has proven to be an effective, durable catalyst for the production of hydrogen from water, according to scientists at Rice University.

New nanomaterials will boost renewable energy

March 9, 2015

Global energy consumption is accelerating at an alarming rate. There are three main causes: rapid economic expansion, population growth, and increased reliance on energy-based appliances across the world.

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.