Ultra-short X-ray pulses could shed new light on the fastest events in physics

November 16, 2015, Oxford University

If you've ever been captivated by slow-motion footage on a wildlife documentary, or you've shuddered when similar technology is used to replay highlights from a boxing match, you'll know how impressive advancements in ultra-fast science can be.

Researchers from the Department of Physics at Oxford University (with colleagues at the Rutherford Appleton Laboratory and the University of Strathclyde) have demonstrated, for the first time, that it is possible to generate ultra-short x-ray pulses using existing technology - and it could open up a huge range of scientific applications.

A new paper, published in the journal Scientific Reports, outlines how computer simulations of a technique called Raman amplification show that current short-duration x-ray flashes - lasting just a thousandth of a billionth of a second - could be compressed even further, down to a fraction of a femtosecond (one millionth of a billionth of a second).

James Sadler, a second-year DPhil student and lead author of the paper, says: 'X-ray pulses from are being used in a whole host of ways, from biomedical technology and work on superconductors to research into proteins and states of matter in dense planets.

'We have shown, through our simulations, that it is possible to shorten the pulse length of x-rays by a factor of a hundred or a thousand - flashes of light shorter than the time it takes for a chemical reaction to take place. This could have exciting implications across a range of scientific disciplines.'

The simulations, using code written by Warren Mori at UCLA and Professor Luís Silva of the Instituto Superior Técnico in Lisbon, were carried out on the UK's SCARF and ARCHER supercomputers.

Professor Peter Norreys, Principal Investigator of the project, adds: 'A good analogy might be those natural history programmes on TV. When you see, for example, a bird in flight captured by an ultra-fast camera, you can see all the beautiful intricacies that can't be picked up by the naked eye or conventional technology.

'By reducing the pulse length of these x-rays by another order of magnitude - in effect, quickening the "shutter speed" - we can make a number of scientific processes much clearer.'

Those processes include some of the shortest events in physics, such as electrons moving in atoms. The key now, say the researchers, is to demonstrate the technique under laboratory conditions.

Explore further: Attosecond physics: Film in 4-D with ultrashort electron pulses

More information: 'Compression of X-ray Free Electron Laser Pulses to Attosecond Duration', Scientific Reports, www.nature.com/articles/srep16755

Related Stories

Ultra-short X-ray pulses explore the nano world

November 24, 2014

Ultra-short and extremely strong X-ray flashes, as produced by free-electron lasers, are opening the door to a hitherto unknown world. Scientists are using these flashes to take "snapshots" of the geometry of tiniest structures, ...

The future of ultrashort laser pulses

July 24, 2014

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

High-speed march through a layer of graphene

October 5, 2015

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta, scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität ...

X-rays in the fast lane

May 10, 2013

X-ray free-electron lasers (XFELs) produce higher-power laser pulses over a broader range of energies compared with most other x-ray sources. Although the pulse durations currently available are enormously useful for the ...

Recommended for you

Tunable diamond string may hold key to quantum memory

May 22, 2018

A quantum internet promises completely secure communication. But using quantum bits or qubits to carry information requires a radically new piece of hardware—a quantum memory. This atomic-scale device needs to store quantum ...

Research reveals how order first appears in liquid crystals

May 22, 2018

Liquid crystals undergo a peculiar type of phase change. At a certain temperature, their cigar-shaped molecules go from a disordered jumble to a more orderly arrangement in which they all point more or less in the same direction. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.