Polarization vision gives fiddler crabs the edge in detecting rivals

November 20, 2015, University of Bristol
Fiddler crabs (Uca stenodactylu) use polarization vision to sense the approach of rivals, scientists at the University of Bristol, UK have found. The research, carried out in Panama, is the first field-based evidence that animals use polarization vision to enhance the detection of objects. Credit: Dr Martin How

Fiddler crabs use polarization vision to sense the approach of rivals, scientists at the University of Bristol have found. The research, carried out in Panama, is the first field-based evidence that animals use polarization vision to enhance the detection of objects.

Fiddler crabs (Uca stenodactylu) are sensitive to the polarization of light across the majority of their eyes, potentially allowing them to use polarization information for general visual tasks. However, investigations into this ability have largely been confined to laboratory settings under artificial lighting - until now.

Dr Martin How from Bristol's Ecology of Vision Group and colleagues studied wild populations of on mudflats close to the Pacific entrance of the Panama Canal. A fiddler crab's body generates polarization contrast against the background which means that, when backlit by the sun, their claws and legs appear bright to any creature with , including fellow members of the species.

The researchers tested whether male crabs living in and defending burrows responded to approaching targets on the mudflat over distances proportional to the polarization contrast of the target. The experimental 'target' was a weighted sled pulled along the mudflat towards the crab via a remotely operated pulley system. Attached to the sled was a piece of polymer retarder film capable of modifying transmitted polarized light to generate three different types of polarization.

The scientists found that male crabs responded to the approaching target as if it was a threat, such as another crab looking for a burrow or a predator. This response involved a sequence of typical defensive behaviours whereby the crab would first freeze, then quickly run back home to its burrow and assume a position of vigilance before descending into the burrow out of sight.

The 'freeze' response occurred over distances 24.2 per cent further away when the approaching target was vertically polarized compared to horizontally polarized.

Dr How said: "Our results show that these animals use their polarization vision to enhance contrast in their visual environment, thus increasing their ability to detect and respond to both fellow members of their species and ground-based predators.

"Our results provide one of the first pieces of evidence for a function of object-based polarization vision under natural lighting conditions."

Exactly how the polarization receptors in the crab's eye contribute to enhancing contrast, and hence detection, has yet to be demonstrated conclusively. However, there is evidence to suggest that intensity and polarization information conjoin early in visual processing to generate a single measure of contrast.

Future studies of this mechanism could lead to interesting technological applications in the field of digital image analysis, such as the development of contrast-enhancement algorithms for polarization cameras, the researchers said.

Two further papers, co-authored by members of the University of Bristol's Ecology of Vision Group, are also published in Current Biology this week.

Explore further: Cuttlefish have high definition polarization vision, researchers discover

More information: 'Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab' by Martin J. How, John H. Christy, Shelby E. Temple, Jan M. Hemmi, N. Justin Marshall, Nicholas W. Roberts in Current Biology

'Circularly Polarized Light as a Communication Signal in Mantis Shrimps' by Yakir Luc Gagnon, Rachel Marie Templin, Martin John How, N. Justin Marshall in Current Biology

'Cyp27c1 Red-Shifts the Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2' by Jennifer M. Enright, Matthew B. Toomey, Shin-ya Sato, Shelby E. Temple, James R. Allen, Rina Fujiwara, Valerie M. Kramlinger, Leslie D. Nagy, Kevin M. Johnson, Yi Xiao, Martin J. How, Stephen L. Johnson, Nicholas W. Roberts, Vladimir J. Kefalov, F. Peter Guengerich, and Joseph C. Corbo in Current Biology

Related Stories

New camera sheds light on mate choice of swordtail fish

September 16, 2014

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in St. Louis to discover ...

Capturing an octopus-eye view of the Great Barrier Reef

January 27, 2012

A specialized camera that allows scientists to see as reef-dwelling animals do has been built by a team of researchers at the University of Bristol. The team will travel to Lizard Island off the coast of Queensland this year ...

Flowers' polarization patterns help bees find food

June 5, 2014

Like many other insect pollinators, bees find their way around by using a polarization sensitive area in their eyes to 'see' skylight polarization patterns. However, while other insects are known to use such sensitivity to ...

Study links US polarization to TV news deregulation

September 25, 2015

Increasing American political polarization is linked to television news deregulation following the federal Telecommunications Act of 1996, according to a Washington State University study.

Recommended for you

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Probiotic bacteria evolve inside mice's GI tracts

March 26, 2019

Probiotics—which are living bacteria taken to promote digestive health—can evolve once inside the body and have the potential to become less effective and sometimes even harmful, according to a new study from Washington ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.