New camera sheds light on mate choice of swordtail fish

September 16, 2014 by Beth Miller, Washington University in St. Louis
New camera sheds light on mate choice of swordtail fish
A video polarimetry image of a large male northern swordtail in false color shows the differences in polarization on its surface.

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in St. Louis to discover that female northern swordtail fish choose their mates based on a similar display.

Marine biologists at the University of Texas at Austin used a bioinspired polarization camera developed by Viktor Gruev, PhD, associate professor of computer science & engineering at Washington University, to make the discovery. His camera has been used in other applications in marine biology and also is now being used at the School of Medicine to help physicians and researchers see cancer cells very early in development.

In the new study, the researchers found that female swordtail fish are attracted to certain patterns, called polarization ornaments, visible in polarized light in large male swordtail fish.

"There is a lot of social interaction among the fish," Gruev said. "We saw the female fish checking out the large males and looking at their polarization ornaments. During the whole courting behavior, the more polarization a male has, the higher the chance for mating."

Various animals can detect polarization, or the alignment of light waves in a plane. Previous research found polarization sensitivity in invertebrate animals, including octopus, but this is the first research to find polarization behavior in vertebrate animals.

The research was published online Sept. 2, 2014, in the Proceedings of the National Academy of Sciences Early Edition.

Gruev's camera is similar to polarized sunglasses, which reduce glare by blocking polarized light. The camera is built with nanomaterials inside the camera, allowing it to capture the polarization properties of light in real time.

"We changed the polarization so that the large males with high contrast showed good contrast in their polarization ornaments," Gruev says. "When we suppressed the polarization ornaments externally with light, the females didn't pay attention to the males. When we changed the sources to change the polarization signals on the fish body, the social interactions between female and male swordfish significantly increase."

Gruev is an expert in polarization and signal processing. The is a replication of the visual system of the mantis shrimp, which is among the most sophisticated vision of all animals.

Gruev and several other researchers from Washington University also recently published a review paper in the Journal of the Proceedings of the IEEE on bioinspired imaging sensors and their applications in biomedicine.

Explore further: Capturing an octopus-eye view of the Great Barrier Reef

More information: Calabrese GM, Brady PC, Gruev V, Cummings ME. Polarization signaling in swordtails alters female mate preference. Proceedings of the National Academy of Sciences online Early Edition, Sept. 2, 2014, DOI: 10.1073/pnas.1321368111

Related Stories

Capturing an octopus-eye view of the Great Barrier Reef

January 27, 2012

A specialized camera that allows scientists to see as reef-dwelling animals do has been built by a team of researchers at the University of Bristol. The team will travel to Lizard Island off the coast of Queensland this year ...

Plasmon-enhanced Polarization-selective filter

July 17, 2014

As we all know, some optical devices can only work with a certain incident polarization direction. In this case, a polarizer is necessary to shift the polarization direction of linearly polarized light. A common polarizer ...

Flowers' polarization patterns help bees find food

June 5, 2014

Like many other insect pollinators, bees find their way around by using a polarization sensitive area in their eyes to 'see' skylight polarization patterns. However, while other insects are known to use such sensitivity to ...

Recommended for you

Mysteries of the primrose unraveled

December 18, 2018

Plant scientists at the University of East Anglia have succeeded in unravelling the complete genome sequence of the common primrose—the plant whose reproductive biology captivated the Victorian naturalist Charles Darwin.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.