Early Earth forecast calls for periodically hazy skies

November 6, 2015, University of St Andrews
Early Earth forecast calls for periodically hazy skies

Groundbreaking scientific work led by researchers at the University of St Andrews is redefining the trajectory of planetary evolution.

It is widely accepted that the juvenile Earth's atmosphere was devoid of oxygen until around 2.4 billion years ago, when oxygen concentrations rose abruptly during what is known as the 'Great Oxidation Event' (GOE). This event fundamentally altered the chemistry and the ecological structure of our planet, ultimately paving the way for the emergence of .

Researchers from the Department of Earth & Environmental Sciences at St Andrews, in collaboration with the University of Leeds (UK), the University of Maryland (USA), and NASA Goddard Space Flight Center (USA), have revolutionised this narrative of atmospheric history, based on chemical analysis of sedimentary rocks deposited immediately prior to the GOE.

These rocks – from South Africa and Western Australia – suggest that Earth's early oxygen-free atmosphere was far more fascinating than previously thought. Namely, these new geochemical analyses reveal widespread periodic occurrences of a hydrocarbon-rich "haze", similar to the atmosphere on Saturn's Moon, Titan.

The findings are published in Earth and Planetary Science Letters, a leading journal for researchers across the Earth and planetary sciences community.

Dr Gareth Izon, who led the research, said: "These data are really exciting because we now see evidence for a hazy atmosphere in multiple spatially separated sedimentary successions spanning nearly 200 million years of Earth history."

The researchers speculate that episodic bursts of methane production from specialised microorganisms ("methanogens") could explain this phenomenon.

Dr Aubrey Zerkle, principal investigator of the project, said: "These events provide a spectacular example of the role of biology in modulating our planetary , particularly on the early Earth when microbes ruled the planet."

"Importantly, these new records emphasise the need to understand the mechanisms and feedbacks controlling both biogenic oxygen and methane fluxes in the prelude to the GOE," Izon continued.

Dr Mark Claire, a co-author on the study, added: "This biologically-produced methane haze scatters sunlight, so could have had dramatic consequences on the climate. Examining the early Earth has once again revealed a complicated and fascinating interplay between Earth and the life it supports."

Explore further: Hazy shades of life on early Earth

More information: Gareth Izon et al. Multiple oscillations in Neoarchaean atmospheric chemistry, Earth and Planetary Science Letters (2015). DOI: 10.1016/j.epsl.2015.09.018

Related Stories

Hazy shades of life on early Earth

March 18, 2012

A 'see-sawing' atmosphere over 2.5 billion years ago preceded the oxygenation of our planet and the development of complex life on Earth, a new study has shown.

Early Titan was a cold, hostile place for life

June 30, 2015

Titan is a mysterious orange-socked moon of Saturn that is exciting to astrobiologists because it has some of the same kinds of chemicals that were precursors to life on Earth. It also has a hydrological cycle that allows ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.