Hot processor speeds up UK genome analysis

October 28, 2015, The Genome Analysis Centre
World's first NGS bioinformatics processor Bio-IT Processor. Credit: Edico Genome

TGAC's high performance computing (HPC) infrastructure will benefit from the addition of Edico Genome's DRAGEN, the world's first processor designed to analyse specific sequencing data tasks. DRAGEN will be used to accelerate TGAC's next-generation sequencing workflows.

Initial evaluations of DRAGEN showed that mapping against the ash tree genome was 177 times faster per processing core than TGAC's local HPC systems, requiring only 7 minutes instead of 3 hours on one of the larger datasets. Alignment runs on the that take approximately two hours on TGAC's HPC servers took just three minutes using DRAGEN.

Project Lead Dr Tim Stitt, Head of Scientific Computing at TGAC, said: "We are really excited to be Edico Genome's first DRAGEN customer in the U.K., and we hotly anticipate utilising this ground-breaking technology to advance our mission to promote a sustainable bio-economy and maintain the U.K.'s food security.

"In particular, we are really interested to see how DRAGEN handles the , which is five times bigger than the and much more complex. Wheat is the staple diet for over 35 percent of the world's population, which is predicted to increase to 9 billion people by 2050.

"By understanding the genomic building blocks of wheat, and its diversity, we can better inform breeders on how to improve their yields, particularly in areas where wheat is prone to disease and drought. Obviously the sooner we do this the better and DRAGEN can greatly help us in this mission.

"Alignment against reference genomes is a fundamental task undertaken daily by TGAC researchers. Thanks to our partnership with Edico Genome, our DRAGEN system will contain both genome and transcriptome highly optimised analysis pipelines."

"TGAC is proud to be a leader in bringing new and disruptive technologies into the hands of the bioscience community and our collaboration with Edico Genome continues to illustrate our leadership in this area."

The DRAGEN Bio-IT Processor is integrated on a PCIe card and available in a pre-configured server, enabling seamless integration into bioinformatics workflows. DRAGEN is highly reconfigurable, using a field-programmable gate array (FPGA) to provide hardware-accelerated implementations of BCL conversion, compression, mapping, alignment, sorting, duplicate marking, haplotype variant calling and joint genotyping.

The DRAGEN system therefore, is much faster than traditional approaches that execute algorithmic implementations in software. In a recent study published in Genome Medicine, DRAGEN sped up analysis of a whole from 22.5 hours to 41 minutes, while also achieving sensitivity and specificity of 99.5 percent. Similar efficiency gains could make an enormous impact due to the high throughput of genomic data processed at TGAC, where sequence alignment is critical to many sequencing projects.

"Our collaboration with TGAC, a powerhouse in genomics that is home to one of the largest computing hardware facilities in Europe, is a great example of the benefits DRAGEN holds for sequencing centres," said Pieter van Rooyen, PhD, Chief Executive Officer of Edico Genome. "We look forward to continuing to work with researchers and clinicians around the world with a need to analyse next-generation sequencing data rapidly and cost effectively without compromising accuracy."

TGAC is strategically funded by BBSRC and operates a National Capability to promote the application of genomics and bioinformatics to advance bioscience research and innovation.

Explore further: Researchers achieve 26-hour rapid whole-genome sequencing in critically ill infants

Related Stories

Single-cell technologies advance the value of genomics

June 24, 2015

Biologists are looking to extract as much information as possible from small amounts of valuable biological material, and to understand biological responses at higher levels of resolution. The Genome Analysis Centre has been ...

Changing the biological data visualization world

September 2, 2015

Scientists at TGAC, alongside European partners, have created a cutting-edge, open source community for the lifesciences. BioJavaScript (BioJS) is a free, accessible software library that develops visualization tools for ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

Study suggests trees are crucial to the future of our cities

March 25, 2019

The shade of a single tree can provide welcome relief from the hot summer sun. But when that single tree is part of a small forest, it creates a profound cooling effect. According to a study published today in the Proceedings ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.