Sponge cells build skeletons with pole-and-beam structure

September 17, 2015, Cell Press
Sponge cells build skeletons with pole-and-beam structure

Researchers reporting in the Cell Press journal Current Biology on September 17 have found that sponges build their skeletons in a completely different way than other animals do. In fact, the building process looks a lot like the construction of man-made buildings, minus the architectural plans.

"We were surprised to find that spicules are dynamically moved and then become held up; we were very fascinated," says Noriko Funayama of Kyoto University in Japan.

Spicules' needle-like forms of silica have long been known as the structural supports found in the bodies of . While the skeletons of sponges do have clear similarities to architectural buildings, no one knew how they were put together in development.

Funayama and her colleagues have now captured movies of the developing freshwater demosponge Ephydatia fluviatilis that reveal how those spicules are produced, transported, and assembled by a cast of "player cells" to prop up the sponges' bodies and support their growth. First, spicules are produced by one type of manufacturing cell. Second, transporter cells carry mature spicules until they pierce the outer surface of the animal. At that point, the pierced spicule is raised up and its basal end cemented in place with collagen matrices to form a basic pole-and-beam structure.

In other words, there is a division of labor among various types of cells within the sponges, which produce the self-organized biological structures through a chain of simple reactions. The findings reveal a fundamentally new mechanism of forming the three-dimensional body shape of animals, the researchers say.

"So far as we know, this is the first report of collective behaviors of individual cells building a self-organized biological structure using non-cellular materials—a parallel to, for example, the well-known collective behaviors of individual termites building mounds," Funayama says.

Video shows the dynamic spicule-by-spicule building up of a sponge skeleton. This is a Z-projected movie taken from the side of a sponge (Ephydatia fluviatilis) hatching from a gemmule. Credit: Nakayama et al./Current Biology 2015

The researchers now plan to examine skeletal construction in other species of sponges. And—who knows, they say—the sponges' unusual skeletal formations and their novel mode of construction might even inspire us in other, surprising ways.

"This work not only sheds new light on skeleton formation of animals, but also might inspire interdisciplinary studies in fields such as theoretical biology, bioengineering, robotics, and architectural engineering, utilizing mechanisms of self-constructing architectures that self-adjust to their environments, including remote environments such as the deep sea or space," the researchers write.

This video shows the dynamic movement of fluorescently visualized spicules inside the sponge (Ephydatia fluviatilis) hatching from a gemmule. Arrowheads point to the movements of held up spicules. Images are taken from beneath the sponge. Credit: Nakayama et al./Current Biology 2015

This video shows a moving spicule that has attached cells. The attached cells are artificially shaded magenta. The images are taken from beneath the sponge. Credit: Nakayama et al./Current Biology 2015

Explore further: Scientists create new flexible mineral inspired by deep-sea sponges

More information: Current Biology, Nakayama and Arima et al.: "Dynamic Transport and Cementation of Skeletal Elements Build Up the Pole-and-Beam Structured Skeleton of Sponges" dx.doi.org/10.1016/j.cub.2015.08.023

Related Stories

Nyoongar names for newly classified sponges

September 4, 2014

Two new species of marine sponges, found only in the south-west of Western Australia, have been identified and named in recognition of the Aboriginal peoples who are the traditional owners of the region.

Widespread tetraradial symmetry among early fossil sponges

April 29, 2014

Sponges are usually considered to be the oldest living animals, having evolved before all other groups. The simplicity of their body structure and tissue organization has for many years made them candidates for the ancestral ...

Sea sponge anchors are natural models of strength

April 6, 2015

Life may seem precarious for the sea sponge known as Venus' flower basket. Tiny, hair-like appendages made essentially of glass are all that hold the creatures to their seafloor homes. But fear not for these creatures of ...

Oldest known sponge found in China

March 10, 2015

(Phys.org)—A team of researchers with members from China, the U.S. and France has identified an ancient sponge found in a geologic formation in southern China and have dated it to 600 million years ago. In their paper published ...

Recommended for you

Hormone keys plant growth or stress tolerance, but not both

January 17, 2018

Plants that grow well tend to be sensitive to heat and drought, and plants that can handle those stresses often have stunted growth. A Purdue University plant scientist has found the switch that creates that antagonism, opening ...

Circadian regulation in the honey bee brain

January 17, 2018

Circadian clocks regulate the behaviour of all living things. Scientists from the University of Würzburg have now taken a closer look at the clock's anatomical structures and molecular processes in the honeybee.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.