Motorized nanocar powered by light

September 30, 2015, Wiley
Motorized nanocar powered by light

Constructing nanomachines that move controllably across surfaces has the potential to enable researchers to build structures on the nanoscale from the bottom up, but is challenging on several fronts. How such a device can be "powered" so that it moves across a surface without sticking to it and how its movement can then be tracked are questions tackled by the group of James M. Tour in their latest report about the design of a new nanocar in Asian Journal of Organic Chemistry.

The nanocar was built by at Rice University, Houston, Texas, and has a , which provides "power" for the vehicle through light-induced isomerization. The isomerization causes the "motor" component to flip its chemical configuration and propels the nanocar with a "paddle-wheel"-type motion. The second important feature is a fluorophore based on 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY), which allows the movement of the nanocar to be tracked by single-molecule fluorescence microscopy while not interfering with the motion of the car on the surface or the function of the motor.

Construction of the nanocar is now complete and Tour says of the work: "We are now at a stage where we can begin the tracking experiments in these motorized nanocars!". The team is presently testing how the cars move on glass surfaces, which they expect to be in circles, and how the tracking system performs.

Explore further: Rice University rolls out new nanocars (Videos)

More information: Synthesis of a Light-Driven Motorized Nanocar, Asian Journal of Organic Chemistry,

Related Stories

Molecular motors: Pirouetting in the spotlight

September 29, 2015

German scientists have developed a new class of molecular motors that rotate unidirectionally at speeds of up to 1 kHz when exposed to sunlight at room temperature. This unique combination of features opens up novel applications ...

Researchers identify movement of droplets on soft surfaces

August 5, 2015

Researchers from the University of Twente have succeeded in clearly identifying why droplets on soft, squishy surfaces react differently than on hard surfaces. A water droplet, for example, moves very differently over jelly ...

Recommended for you

Atomic-scale ping-pong

June 20, 2018

New experiments by researchers at the National Graphene Institute at the University of Manchester have shed more light on the gas flow through tiny, angstrom-sized channels with atomically flat walls.

Chameleon-inspired nanolaser changes colors

June 20, 2018

As a chameleon shifts its color from turquoise to pink to orange to green, nature's design principles are at play. Complex nano-mechanics are quietly and effortlessly working to camouflage the lizard's skin to match its environment.

Method could help boost large scale production of graphene

June 19, 2018

The measure by which any conductor is judged is how easily, and speedily, electrons can move through it. On this point, graphene is one of the most promising materials for a breathtaking array of applications. However, its ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.