The molecules that tell you how to grow a backbone

September 7, 2015, Monash University
The molecules that tell you how to grow a backbone

Growing the right number of vertebrae in the right places is an important job – and scientists have found the molecules that act like 'theatre directors' for vertebrae genes in mice: telling them how much or how little to express themselves.

The finding may give insight into how the body-shapes of different species of animals evolved, since the under scrutiny are present in a wide range of animals – ranging from fish to snakes to humans.

An international team led by Dr Edwina McGlinn of EMBL Australia at Monash University found that de-activating a small group of microRNA (miRNA) molecules sent things awry for different parts of the backbone.

They already knew that 'Hox' genes were crucial in determining vertebrae patterns – as well as playing an important role in the spinal cord and wider nervous system. But how these genes were regulated was still unclear.

Edwina's team 'knocked out' molecules of the miRNA family miR-196.

They used fluorescent markers to light up cells where the miRNA molecules would have otherwise been located, and where the miRNAs have the potential to control the levels of tens to hundreds of genes.

This caused a 'flow-on effect' for many genes, the most significant of which were the Hox genes.

A segmented vertebral column – a backbone – is a defining characteristic of .

Different species have different numbers of vertebrae in different areas of their – for example in their neck (cervical spine), middle-and-upper back (thoracic spine), or lower back (lumbar spine). Remarkably however, individuals of the same species show almost no variation in their spine.

This suggests that each animal has adapted just the right number and types of for its environment.

"What we have found is a mechanism that controls the correct transition from one area of the spine to another as it is forming," says Edwina.

The finding is part of a project by the McGlinn Group to build a more complete road-map of how the size, shape and number of bones form within the early vertebrate embryo. This knowledge will contribute to the basic understanding of developmental processes, which in turn may assist in the treatment of a number of diseases and in regenerative medicine applications: for example altered Hox gene expression is important in some forms of leukaemia—so it's critical to know all we can about how these are regulated.

"The research is still in its early stages, but you've got to understand how an embryo forms before you can use that knowledge for medical or regenerative purposes," Edwina says.

Explore further: Certain genes in vertebrate embryos correlate with differences in neck length

More information: "Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs." PNAS 2015 112 (35) E4884-E4893; published ahead of print August 17, 2015, DOI: 10.1073/pnas.1512655112

Related Stories

The skeleton: Size matters

October 27, 2009

Vertebrates have in common a skeleton made of segments, the vertebrae. During development of the embryo, each segment is added in a time dependent manner, from the head-end to the tail-end: the first segments to be added ...

Extinct fossils reveal their genetic pattern

October 23, 2012

Researchers have provided a glimpse at genetic expression in long-extinct fossil dinosaurs. This new insight comes from the discovery of a correlation between the genetic patterning observed in today's chickens and crocodiles, ...

Human-like spine morphology found in aquatic eel fossil

May 23, 2012

For decades, scientists believed that a spine with multiple segments was an exclusive feature of land-dwelling animals. But the discovery of the same anatomical feature in a 345-million-year-old eel suggests that this complex ...

Recommended for you

Not all stem cells are created equal, study reveals

March 22, 2019

Researchers from the University of Toronto's Institute for Biomaterials and Biomedical Engineering (IBBME) and the Donnelly Centre have discovered a population of cells – dubbed to be "elite" – that play a key role in ...

Ancient birds out of the egg running

March 22, 2019

The ~125 million-year-old Early Cretaceous fossil beds of Los Hoyas, Spain, have long been known for producing thousands of petrified fish and reptiles (Fig. 1). However, researchers have uncovered an extremely rare, nearly ...

Making solar cells is like buttering bread

March 22, 2019

Formamidinium lead iodide is a very good material for photovoltaic cells, but getting the correct stable crystal structure is a challenge. The techniques developed so far have produced poor results. However, University of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.