Team shows how dynamin mediates membrane constriction and scission

August 27, 2015, Helmholtz Association of German Research Centres

Cells continually form membrane vesicles that are released into the cell. If this vital process is disturbed, nerve cells, for example, cannot communicate with each other. The protein molecule dynamin is essential for the regulated formation and release of many vesicles.

Scientists of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and the Institute for Biophysical Chemistry of Hannover Medical School (MHH), together with researchers from the Freie Universität Berlin and the Leibniz-Institut für Molekulare Pharmakologie (FMP), have now elucidated the regulated process by which the molecular "motor" dynamin assembles into a screw-like structure. Moreover, they demonstrated how specific mutations impair the function of dynamin, for example in the congenital muscle disorder centronuclear myopathy or the neuropathy Charcot-Marie-Tooth disease. The researchers' study represents an important contribution to the development of new therapeutic approaches.

To transmit signals, release neurotransmitters that are packed in vesicles. These vesicles are formed through membrane invaginations of the cell wall which are constricted and severed by dynamin. First, a chain of dynamin molecules wraps around the neck of the budding vesicle in a spiral. In a second energy-dependent step, the dynamin spiral is constricted, and the vesicle is released into the cell.

The researchers elucidated the 3-dimensional structure of the basic component of the spiral. It consists of four dynamin molecules, called a dynamin tetramer. "For the first time we could determine how the dynamin tetramers assemble into a spiral," said Dr. Katja Fälber from the Crystallography Department of the MDC. "The structure also explains why this process only occurs on membranes: Only there do rearrangements in the dynamin tetramer take place that release the contacts for formation," said Professor Oliver Daumke.

Explore further: Spiral constriction -- how dynamin mediates cellular nutrient uptake

More information: Crystal structure of the dynamin tetramer, Nature, DOI: 10.1038/nature14880

Related Stories

Dynamin—a new tool to tackle neurological disorders

June 3, 2015

In a world first, neuroscientists at Flinders University have identified a series of chemical tools that can either increase or inhibit the release of neurotransmitters by neurons, the cells of the brain.

Crystal structure shows how motor protein works

September 18, 2011

The crystal structure of the dynamin protein — one of the molecular machines that makes cells work — has been revealed, bringing insights into a class of molecules with a wide influence on health and disease.

Researchers propose new mechanism for cell membrane fission

April 8, 2013

A study led by the Membrane Nanomechanics group of the Biophysics Unit of the UPV/EHU-University of the Basque Country has made it possible to characterise the functioning of a protein responsible for cell membrane splitting. ...

The downside of microtubule stability

June 15, 2009

Stalled microtubules might be responsible for some cases of the neurological disorder Charcot-Marie-Tooth (CMT) disease, Tanabe and Takei report in the Journal of Cell Biology . A mutant protein makes the microtubules too ...

Recommended for you

Scientists shed light on biological roots of individuality

February 16, 2018

Put 50 newborn worms in 50 separate containers, and they'll all start looking for food at roughly the same time. Like members of other species, microscopic C. elegans roundworms tend to act like other individuals their own ...

Plants are given a new family tree

February 16, 2018

A new genealogy of plant evolution, led by researchers at the University of Bristol, shows that the first plants to conquer land were a complex species, challenging long-held assumptions about plant evolution.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.