Dust pillars of destruction reveal impact of cosmic wind on galaxy evolution

July 27, 2015 by Jim Shelton, Yale University
Dust pillars of destruction reveal impact of cosmic wind on galaxy evolution
This Hubble Space Telescope image of a spiral galaxy in the Coma cluster highlights dust extinction features. Credit: NASA, ESA, and Roberto Colombari

Astronomers have long known that powerful cosmic winds can sometimes blow through galaxies, sweeping out interstellar material and stopping future star formation. Now they have a clearer snapshot of how it happens.

A Yale University analysis of one such event in a nearby galaxy provides an unprecedented look at the process. The research is described in the Astronomical Journal.

Specifically, Yale astronomer Jeffrey Kenney looked at the way the cosmic wind is eroding the and dust at the leading edge of the galaxy. The wind, or ram pressure, is caused by the galaxy's orbital motion through hot gas in the cluster. Kenney found a series of intricate dust formations on the disk's edge, as cosmic wind began to work its way through the galaxy.

"On the leading side of the galaxy, all the gas and dust appears to be piled up in one long ridge, or dust front. But you see remarkable, fine scale structure in the dust front," Kenney explained. "There are head-tail filaments protruding from the dust front. We think these are caused by dense gas clouds becoming separated from lower density gas."

Cosmic wind can easily push low-density clouds of interstellar gas and dust, but not high-density clouds. As the wind blows, denser gas lumps start to separate from the surrounding lower density gas which gets blown downstream. But apparently, the high and low-density lumps are partially bound together, most likely by magnetic fields linking distant clouds of gas and dust.

Dust pillars of destruction reveal impact of cosmic wind on galaxy evolution
The leading side of the disk shows the effects of strong ram pressure. Credit: NASA, ESA, and Roberto Colombari

"The evidence for this is that dust filaments in the HST (Hubble Space Telescope) image look like taffy being stretched out," Kenney said. "We're seeing this decoupling, clearly, for the first time."

The analysis is based on Hubble images of a spiral galaxy in the Coma cluster, located 300 million light years from Earth. It is the closest high-mass cluster to our solar system. Kenney first saw the images two years ago and realized their possible significance in understanding the way ram pressure strips throughout the universe.

In the 1990s, a famous Hubble photo dubbed "Pillars of Creation" showed columns of dust and gas in the Eagle Nebula that were in the process of forging . The dust filaments Kenney identified are similar in some ways to the "Pillars of Creation," except they are 1,000 times larger.

In both cases, destruction is at least as important as creation. An external force is pushing away most of the gas and , therefore destroying most of the cloud, leaving behind only the most dense material—the pillars. But even the pillars don't last that long.

Because gas is the raw material for star formation, its removal stops the creation of new stars and planets. In the Eagle Nebula, the pressure arises from intense radiation emitted by nearby massive stars; in the Coma galaxy, it is pressure from the galaxy's orbital motion through hot gas in the cluster. Although new stars are being born in both kinds of pillars, we are witnessing, in both, the last generation of stars that will form.

Much of Kenney's research has focused on the physical interplay of with their environment.

"A great deal of galaxy evolution is driven by interactions," Kenney said. "Galaxies are shaped by collisions and mergers, as well as this sweeping of their gas from cosmic winds. I'm interested in all of these processes."

Kenney's co-authors on the paper are Yale doctoral student Anne Abramson and Hector-Bravo Alfaro from the Universidad de Guanajuato in Mexico.

Explore further: Image: A Hubble sweep of the dust filaments of NGC 4217

More information: "HST and HI Imaging of Strong Ram Pressure Stripping in the Coma Spiral NGC 4921: Dense Cloud Decoupling and Evidence for Magnetic Binding in the ISM," Jeffrey D. P. Kenney, Anne Abramson & Hector Bravo-Alfaro, 2015 August, Astronomical Journal, Vol. 150, No. 2 dx.doi.org/10.1088/0004-6256/150/2/59 , Arxiv: arxiv.org/abs/1506.04041

Related Stories

Image: A Hubble sweep of the dust filaments of NGC 4217

January 28, 2015

In this image the NASA/ESA Hubble Space Telescope takes a close look at the spiral galaxy NGC 4217, located 60 million light-years away from Earth. The galaxy is seen almost perfectly edge on and is a perfect candidate for ...

Hubble looks at stunning spiral

July 13, 2015

This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way.

What was here before the solar system?

May 29, 2015

The solar system is old. Like, dial-up-fax-machine-old. 4.6 billion years to be specific. The solar system has nothing on the universe. It's been around for 13.8 billion years, give or take a few hundred million. That means ...

Recommended for you

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

New technique for finding life on Mars

January 18, 2018

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific ...

North, east, south, west: The many faces of Abell 1758

January 18, 2018

Resembling a swarm of flickering fireflies, this beautiful galaxy cluster glows intensely in the dark cosmos, accompanied by the myriad bright lights of foreground stars and swirling spiral galaxies. A1758N is a sub-cluster ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.