Synthetic biology used to engineer new route to biochemicals

June 25, 2015 by Andy Fell, UC Davis
Engineered bacteria use both glucose and acetate, instead of just glucose, as raw material to make isobutyl acetate, which can be used in chemical manufacturing and as fuel. Credit: Shota Atsumi/UC Davis

Living cells can make a vast range of products for us, but they don't always do it in the most straightforward or efficient way. Shota Atsumi, a chemistry professor at UC Davis, aims to address that through "synthetic biology:" designing and building new biochemical pathways within living cells, based on existing pathways from other living things.

In a new paper published by Nature Communications June 25th, Atsumi and colleagues Yohei Toshiro and Shuchi Desai describe building a new pathway that lets the bacterium, E. coli, feed on both sugar (glucose) and acetate, a common waste material from biomass, to make isobutyl acetate. This product can be used as the basis for flavoring agents, solvents and fuels.

The original pathway starts with glucose, which is converted into both isobutanol (via a pyruvate intermediate) and into acetyl-coenzyme A, a common building block in biochemistry used for making biochemicals such as proteins, fats and alcohols, among other things. The theoretical maximum carbon yield from this pathway is 67 percent, which is lower than chemists would like to see.

Atsumi's team engineered E. coli so that they could scavenge acetate to make acetyl-CoA while using glucose to make isobutanol. The new pathway raises the theoretical maximum carbon yield of isobutyl acetate to 75 percent.

The process might be further improved by using an acetate-assimilation pathway from other soil bacteria that are better at living off acetate than E. coli, the authors note. Because acetyl-CoA is such an important material for making other biological molecules, direct acetate assimilation could have wide application in biotechnology.

Explore further: Scents and sustainability: Renewable sources for artificial scents and flavors

More information: Two-dimensional isobutyl acetate production pathways to improve carbon yield, Nature Communications 6, Article number: 7488 DOI: 10.1038/ncomms8488

Related Stories

Microbe processes carbon via new metabolic pathway

January 21, 2011

(PhysOrg.com) -- A Dead Sea microbe has been found to use a previously unknown metabolic pathway to metabolize fats as a source of carbon to synthesize carbohydrates. This suggests there may be other undiscovered pathways ...

'Hidden' fragrance compound can cause contact allergy

May 27, 2015

Linalyl acetate, a fragrance chemical that is one of the main constituents of the essential oil of lavender, is not on the list of allergenic compounds pursuant to the EU Cosmetics Directive. Thus, it does not need to be ...

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Ultra-sharp images make old stars look absolutely marvelous

March 21, 2019

Using high-resolution adaptive optics imaging from the Gemini Observatory, astronomers have uncovered one of the oldest star clusters in the Milky Way Galaxy. The remarkably sharp image looks back into the early history of ...

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.