Researchers turn to the ocean to help unravel the mysteries of cloud formation

June 9, 2015
Sea spray aerosol particles occur naturally at the ocean-air boundary and can help to seed new clouds. Along with collaborators, the Bertram group studies sea spray aerosol on research cruises and also in controlled laboratory environments. Credit: Michelle Kim

In a study published today in ACS Central Science, a research team led by University of Wisconsin-Madison chemistry professor Timothy Bertram peels back the mysteries of the structures of tiny aerosol particles at the surface of the ocean.

The work shows how the particles' influences their abilities to take in moisture from the air, which indicates whether the particle will help to form a cloud—a key to many basic problems in .

To understand the Earth's climate, scientists must consider and measure both human-made environmental pollutants and naturally occurring processes that influence how much energy the planet absorbs from the sun or radiates back into space. One naturally occurring process that plays a big role in this delicate balance is the formation of clouds.

Clouds are made of tiny droplets of water. It has long been known that the droplets that make up clouds form around tiny nuclei—grains of dust, salt or even microbial life.

Clouds help reflect solar energy back to space, but the process for a particle to seed a cloud can change depending on the natural setting. A particle must take up water from its surrounding environment in order to seed a cloud, but the particle's chemical composition may be very uniform or very diverse, affecting its ability to do so.

Bertram's group focuses on areas where chemistry significantly affects climate or the environment. And because oceans cover more than 70 percent of the Earth's surface, the UW-Madison researcher has focused on the ocean surface in order to better understand an important piece of the larger climate picture.

In order to investigate sea spray particles formed at the ocean-air boundary in nature, researchers used a 33-meter-long wave channel to replicate waves found in nature. They filled the wave channel, which is located at the Scripps Institution of Oceanography, with seawater from the ocean. Credit: Christina McCluskey

'While the emission of particulates from the ocean isn't nearly as strong as that from trucks, the majority of the Earth's surface is not covered by trucks,' Bertram says. 'The ocean may be a diffuse source (of these particles), but it's a very important source.'

In their new work, Bertram and colleagues' investigation began in a laboratory-based wave channel, which allowed them to replicate the types of sea spray found near ocean waves. They also studied particles from the actual ocean-air boundary. By mimicking and sea spray in the wave channel, the researchers could gain insight into the structures and potential of particles in the open ocean.

The team then developed a new method that categorizes a diverse population of aerosol particles based on their likelihood of taking up water from the surrounding environment and forming a cloud. Previous approaches yielded one number to assess aerosol particles' ability to form clouds. The new method, however, provides a more precise measure by indicating the percentages of particles in each category, thus more properly accounting for particle-to-particle variability in cloud formation.

'The advancement is that this is general,' Bertram says. 'It's a framework people can use broadly to look at this question of the diversity of particulates and how they impact cloud formation.'

Explore further: Scientists identify ocean biology that affects sea spray chemistry, atmospheric particles

Related Stories

New link between ocean microbes and atmosphere uncovered

May 18, 2015

Few things are more refreshing than the kiss of sea spray on your face. You may not realize it, but that cool, moist air influences our climate by affecting how clouds are formed and how sunlight is scattered over the oceans. ...

Volcanic ash proves inefficient cloud ice maker

May 28, 2015

When tons of ash spewed into the atmosphere from a 2010 Icelandic volcano it caused havoc for vacationers across Europe. But did it also dramatically change clouds? Researchers at Pacific Northwest National Laboratory found ...

Recommended for you

Researchers pin down one source of a potent greenhouse gas

November 20, 2017

A study of a Lake Erie wetland suggests that scientists have vastly underestimated the number of places methane-producing microbes can survive—and, as a result, today's global climate models may be misjudging the amount ...

Clay mineral waters Earth's mantle from the inside

November 20, 2017

The first observation of a super-hydrated phase of the clay mineral kaolinite could improve our understanding of processes that lead to volcanism and affect earthquakes. In high-pressure and high-temperature X-ray measurements ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.