Researchers develop new method to count DNA molecules in just 30 minutes

June 25, 2015, Albert Ludwigs University of Freiburg
3D illustration of droplet formation on a lab-on-a-chip system: Drops of water tear off from the mouths of the channels as the disk rotates. A layer of oil ensures that the drops do not combine again. Credit: Hahn-Schickard

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of the University of Freiburg has developed a method for dividing a DNA sample into thousands of tiny droplets. What sets it apart from previous methods is above all the fact that it is considerably easier to control and rapidly generates more than 10,000 droplets with a diameter of approximately 120 micrometers each. The entire process takes place on a rotating plastic disk the size of a DVD. The researchers presented the new method in an article in the journal Lab Chip.

Carried by , a watery liquid flows through channels on the rotating disk to a chamber filled with oil. At the mouth of the channel, droplets tear off - similar to a dripping faucet. A bioreaction for the detection of DNA takes place in the droplets: They glow if they contain at least one DNA molecule, enabling the scientists to count the molecules with great precision. This is relevant for numerous clinical applications, such as cancer diagnostics, prenatal diagnostics, diagnosis of blood poisoning, or monitoring of HIV patients.

The researchers use an especially fast detection reaction known as recombinase polymerase amplification for the first time ever in the droplets, reducing the time necessary for the entire procedure from more than two hours to less than 30 minutes. Moreover, the new enables the entire sample fluid to be distributed among the , without leaving residue in channels or tubes. That saves money and reduces the amount of effort necessary to prepare sample material.

"The disk is easy to use because all of the reactions in it run automatically, and that makes the method attractive for applications," says Schuler. The disks are inexpensive to manufacture in an injection molding process - a precondition for diagnostic articles, which can only be used once. The researchers hope the method will soon lead to faster and improved procedures in research and hospital laboratories.

The joint research group "Lab-on-a-Chip" of Prof. Dr. Roland Zengerle, head of the Laboratory of MEMS Applications, and the research association Hahn-Schickard develops and improves analytical and diagnostic processes for fields of application in health, nutrition, demography, and the life sciences. Hahn-Schickard manufactures prototypes and pilot series of such lab-on-a-chip systems at a plant located at the Freiburg Biotech Park.

Explore further: Building a biochemistry lab on a chip

More information: "Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA." Lab Chip, 2015,15, 2759-2766, DOI: 10.1039/C5LC00291E

Related Stories

Building a biochemistry lab on a chip

February 12, 2013

(Phys.org)—Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Using micro-fabrication ...

Tiny silicone spheres come out of the mist

May 6, 2015

Technology in common household humidifiers could enable the next wave of high-tech medical imaging and targeted medicine, thanks to a new method for making tiny silicone microspheres developed by chemists at the University ...

3-D printing with metals achieved

June 10, 2015

A team of researchers from the University of Twente has found a way to 3D print structures of copper and gold, by stacking microscopically small metal droplets. These droplets are made by melting a thin metal film using ...

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Race at the edge of the sun: Ions are faster than atoms

March 26, 2019

Scientists at the University of Göttingen, the Institut d'Astrophysique in Paris and the Istituto Ricerche Solari Locarno have observed that ions move faster than atoms in the gas streams of a solar prominence. The results ...

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.