This Slinky lookalike 'hyperlens' helps us see tiny objects

May 22, 2015 by Cory Nealon
The image (above) shows a metamaterial hyperlens. The light-colored slivers are gold and the darker ones are PMMA (a transparent thermoplastic). Light passes through the hyperlens improving the resolution of very small objects.

It looks like a Slinky suspended in motion.

Yet this photonics advancement – called a metamaterial hyperlens – doesn't climb down stairs.

Instead, it improves our ability to see tiny objects.

Described in a research paper published today by the journal Nature Communications, the hyperlens may someday help detect some of the most lethal forms of cancer.

It could also lead to advancements in nanoelectronic manufacturing and boost scientists' ability to examine single molecules – a development with implications in physics, chemistry, biology and other fields.

"There is a great need in healthcare, nanotechnology and other areas to improve our ability to see tiny objects that elude even the most powerful optical systems. The hyperlens we are developing is, potentially, a giant step toward solving this problem," says Natalia Litchinitser, PhD, professor of at the University at Buffalo and the paper's lead author.

Co-authors are Jingbo Sun, PhD, assistant research professor of electrical engineering at UB, and Mikhail I. Shalaev, a PhD candidate in Litchintser's lab.

Conventional optical systems, such as microscopes and cameras, are limited by diffraction, a phenomena in which light bends as it passes around an edge or through a slit. An example of this are the closely spaced tracks of a DVD, which form a rainbow pattern when looking at the disk.

Diffraction sets a fundamental limit to the resolution of .

Scientists are working to solve diffraction with , which are materials engineered to have properties not yet discovered in nature. Typically, the materials are arranged in repetitive patterns, often smaller in scale than the wavelengths of the phenomena they influence.

Metamaterial hyperlenses overcome the by transforming decaying evanescent waves into propagating waves. Once converted, the former decaying waves, which were commonly lost in conventional imaging, can be collected and transmitted using standard optical components.

Some of the first metamaterial hyperlenses consisted of tiny concentric rings of silver and dielectric (an insulating material). However, this design only works within a narrow range of wavelengths and it suffers from large losses of resonance.

Instead of concentric rings, UB researchers formed tiny slivers of gold and PMMA (a transparent thermoplastic) into a radial shape. The design of this metamaterial hyperlens, which looks like a Slinky suspended in motion, overcomes the diffraction limit in visible frequency range. Moreover, it can be integrated with an optical waveguide, opening the door to hyperlens-based medical endoscopes.

More studies are required, but such a tool could improve doctors' ability to detect some of the most lethal forms of cancer, such as ovarian cancer.

For example, today's high-resolution endoscopes can resolve objects to about 10,000 nanometers. The hyperlens could improve that to at least 250 nanometers or better. This is important because the earlier doctors are able to discover hard-to-find cancers, the more success they have treating the disease.

Another potential application centers on optical nanolithography, the process of passing light through a mask to a pattern on polymer film. Continuous improvement in this field is essential to building the next generation of optoelectronic devices, data storage drives, sensors and other gadgets.

The hyperlens also show promise in sequencing single molecules, a potential advancement with broad implications in numerous fields of research including physics, chemistry and biology.

Explore further: First hyperlens for sound waves created

More information: "Experimental demonstration of a non-resonant hyperlens in the visible spectral range." Nature Communications 6, Article number: 7201 DOI: 10.1038/ncomms8201

Related Stories

First hyperlens for sound waves created

October 25, 2009

Ultrasound and underwater sonar devices could "see" a big improvement thanks to development of the world's first acoustic hyperlens. Created by researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory, ...

New 'metamaterial' practical for optical advances

May 15, 2012

(Phys.org) -- Researchers have taken a step toward overcoming a key obstacle in commercializing "hyperbolic metamaterials," structures that could bring optical advances including ultrapowerful microscopes, computers and solar ...

New optical materials break digital connectivity barriers

March 18, 2015

From computers, tablets, and smartphones to cars, homes, and public transportation, our world is more digitally connected every day. The technology required to support the exchange of massive quantities of data is critical. ...

Recommended for you

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.