Bacteria's hidden traffic control

February 8, 2015, Biophysical Society

Not unlike an urban restaurant, the success of a bacterial cell depends on three things: localization, localization and localization. But the complete set of controls by which bacteria control the movement of proteins and other essential biological materials globally within the confines of their membrane walls has been something of a mystery. Now, researchers at the University of Washington have parsed out the localization mechanisms that E. coli use to sort through and organize their subcellular components.

"Despite their small size and relative simplicity, appear to possess a robust and complex level of subcellular organization, both spatially and temporally, that was once thought to only exist in more complex organisms," said Nathan Kuwada, a postdoctoral fellow in the lab of Paul Wiggins at the University of Washington.

"We wanted to know how many mechanisms bacteria possess to localize subcellular components, and to answer this question, we set out to image the localization pattern of nearly every protein in a bacterial cell for the entire cell cycle."

Kuwada will describe the group's findings this week at the Biophysical Society's 59th annual meeting in Baltimore, Md.

E. coli localize nearly one-fifth of their proteins to specific subcellular sites, but until now, the cell-cycle localization behavior of only a small subset of proteins had been characterized in detail.

Kuwada and his colleagues sought to remedy this by imaging an existing library of green-fluorescent protein fusions in E. coli by use of a high-throughput live-cell imaging scheme. This allowed them to image close to a thousand individual protein fusions in growing cells for 6-8 hours, providing them with hundreds of complete cell cycles for each protein.

Using custom image processing software, the researchers processed and organized the thousands of images from each experiment, allowing them to quantitatively compare the localization patterns on a genomic scale. The researchers also developed a public online database with all of their raw and processed data in a browsable and searchable form at: http://mtshasta.phys.washington.edu/localizome

Rather than a small number of patterns combining in various permutations determined by function, the researchers found that bacteria possess a large number of distinct patterns with subtle spatial and temporal differences.

For example, Kuwada and his colleagues also observed that the DNA-binding proteins were asymmetrically distributed towards the daughter cell during cell divisions, despite the morphological symmetry between parent and daughter .

"Although the asymmetry is somewhat weak, it is still statistically significant and we think it must have an exciting biological significance," Kuwada said. "This finding, which is only observable using our complete-cell-cycle approach, potentially has many biological consequences that we are currently trying to better understand."

Future work for Kuwada and his colleagues includes further exploring the specific mechanisms that drive subcellular organization, through targeting the behavior of specific groups of proteins such as transcription factors with increased precision.

Explore further: Identified the mechanism that controls localization of protein Rac1 in the cell nucleus

More information: bit.ly/1KkOgN0

Related Stories

Cell imaging gets colorful

January 26, 2015

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his team.

How E. coli grows its 'nose'

July 7, 2009

(PhysOrg.com) -- Self-assembling and self-organizing systems are the Holy Grails of nanotechnology, but nature has been producing such systems for millions of years. A team of scientists has taken a unique look at how thousands ...

The localization of an elusive membrane trafficking regulator

September 26, 2014

The transport of hormones and other substances across cell membranes is crucial for cell function and correct organism development. Probing the molecular and cellular mechanisms involved in the process, however, can be challenging. ...

Recommended for you

Floodplain forests under threat

March 19, 2019

A team from the Institute of Forest Sciences at the University of Freiburg shows that the extraction of ground water for industry and households is increasingly damaging floodplain forests in Europe given the increasing intensity ...

Scientists discover common blueprint for protein antibiotics

March 19, 2019

A discovery by researchers at the Los Angeles Biomedical Research Institute (LA BioMed) has uncovered a common blueprint for proteins that have antimicrobial properties. This finding opens the door to design and development ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.