Germs be gone: New nanotechnology keeps bacteria from sticking to surfaces

January 14, 2015, Cornell University
Germs Be Gone! New Technology Keeps Bacteria From Sticking to Surfaces
E. coli cells. Credit: Cornell University

Just as the invention of nonstick pans was a boon for chefs, a new type of nanoscale surface that bacteria can't stick to holds promise for applications in the food processing, medical and even shipping industries.

The technology, developed collaboratively by researchers from Cornell University and Rensselaer Polytechnic Institute, uses an electrochemical process called anodization to create nanoscale pores that change the electrical charge and of a metal , which in turn exerts a repulsive force on bacterial cells and prevents attachment and biofilm formation. These pores can be as small as 15 nanometers; a sheet of paper is about 100,000 nanometers thick.

When the anodization process was applied to aluminum, it created a nanoporous surface called alumina, which proved effective in preventing surrogates of two well-known pathogens, Escherichia coli O157:H7 and Listeria monocytogenes, from attaching, according to a study recently published in the journal Biofouling. The study also investigates how the size of the nanopores changes the on bacteria.

"It's probably one of the lowest-cost possibilities to manufacture a nanostructure on a metallic surface," said Carmen Moraru, associate professor of food science and the paper's senior author. Guoping Feng, a research associate in Moraru's lab, is the paper's first author.

Finding low-cost solutions to limiting bacterial attachments is key, especially in biomedical and applications. "The food industry makes products with low profit margins," said Moraru. "Unless a technology is affordable it doesn't stand the chance of being practically applied."

Anodized metals could be used to prevent buildups of biofilms – slick communities of that adhere to surfaces and are tricky to remove – in biomedical clean rooms and in equipment parts that are hard to reach or clean, Moraru said.

Anodized metal could also have marine applications, such as keeping ship hulls free of algae.

The collaborating group from Rensselaer Polytechnic Institute is led by Diana Borca-Tasciuc, associate professor of mechanical, aerospace and nuclear engineering.

Explore further: New tech application keeps bacteria from sticking to surfaces

Related Stories

Key to pathogenic slime uncovered

September 3, 2014

( —Dental plaque, the sludge in hot springs and black slime inside of toilets are all examples of biofilms, made of slick communities of bacteria that also play roles in many diseases.

Recommended for you

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.

Quantum bits in two dimensions

March 20, 2018

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope, are the ingredients for a novel kind of quantum dot. These extremely small nanostructures allow delicate control ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.