Researchers create and control spin waves, lifting prospects for enhanced info processing

November 17, 2014, New York University

A team of New York University and University of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.

Their method, reported in the most recent issue of the journal Nature Nanotechnology, manipulates "spin waves," which are waves that move in magnetic materials. Physically, these spin waves are much like water waves—like those that propagate on the surface of an ocean. However, like (i.e., light and ), spin waves can efficiently transfer and information from place to place.

The challenge, scientists have found, is developing a means to create and control them.

In the Nature Nanotechnology study, the NYU-UB researchers demonstrated how this could be achieved.

"Spin waves have great potential to improve and make it more energy efficient," says Andrew Kent, a professor in NYU's Department of Physics and the paper's senior author. "Our results show that it's possible to both create and store spin wave energy in remarkably small spaces. The next steps are to understand how far these waves can propagate and how best to encode information in them."

The study's other authors included Ferran Macià, a former NYU-UB Marie-Curie Fellow and now at the University of Barcelona, and Dirk Backes, a former NYU postdoctoral fellow and presently at the University of Cambridge.

Currently, electromagnetic waves in antennas can be converted into spin waves. However, the resulting spin waves have a long wavelength and propagate slowly. By contrast, short-wavelength spin waves can move over greater distances, more quickly, and with less energy, and thus present the possibility of improving a range of communications and electronic devices.

In the Nature Nanotechnology study, the researchers conducted a series of experiments in which they built nanometer scale electrical contacts to inject spin-polarized electrical currents into —a process developed to create and control the movements of its spin waves.

Specifically, by blending different magnetic forces they were able to trap them in a specific area—forming magnetic "droplets" that remained in place rather than propagating, thereby forming a stable energy source. Future research, the scientists say, would then focus on ways to move this localized energy or release it in the form of propagating spin waves.

"We've known that spin waves can propagate, but we've shown in this study that you can control them so they will localize in a specific spot," explains Kent. "By changing the mix of magnetic forces on these droplets—such as with a electrical current or magnetic field—we should be able to get them to emit , perhaps as energy bursts, that can encode information."

Explore further: Researchers take magnetic waves for a spin

More information: Stable magnetic droplet solitons in spin-transfer nanocontacts, Nature Nanotechnology, DOI: 10.1038/nnano.2014.255

Related Stories

Researchers take magnetic waves for a spin

January 29, 2014

Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and ...

Optical 'watermills' control spinning light

November 14, 2014

Scientists at King's have built on research they conducted last year to achieve previously unseen levels of control over the travelling direction of electromagnetic wave in waveguides and proved that the process works equally ...

Generation of spin current by acoustic wave spin pumping

September 26, 2011

Tohoku University, Japan Science and Technology Agency (JST) and Japan Atomic Energy Agency (JAEA) announced on August 22, 2011 that Kenichi Uchida, a PhD student, and Professor Eiji Saitoh of Tohoku University and their ...

Nanoscale magnetic media diagnostics by rippling spin waves

April 3, 2012

Memory devices based on magnetism are one of the core technologies of the computing industry, and engineers are working to develop new forms of magnetic memory that are faster, smaller, and more energy efficient than today's ...

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Study finds people who feed birds impact conservation

March 26, 2019

People in many parts of the world feed birds in their backyards, often due to a desire to help wildlife or to connect with nature. In the United States alone, over 57 million households in the feed backyard birds, spending ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.