Optical 'watermills' control spinning light

November 14, 2014
Optical 'watermills' control spinning light

Scientists at King's have built on research they conducted last year to achieve previously unseen levels of control over the travelling direction of electromagnetic wave in waveguides and proved that the process works equally well in reverse, opening up the way for the development of technologies that could revolutionise secure communications as well as high speed computing.

In a paper published today in Nature Communications the team demonstrates that light waves propagating along a surface will induce the spinning of electrons in a nearby nanoparticle.

When speaking of spin in optics, one can think of the spinning wheel of a watermill as an illustration of the rotating 'motion' of the electric field vector representing the light field. Assuming the 'water wheel' analogy, the team's discovery is equivalent to demonstrating that a flow of water in the canal will cause the 'water wheel' to spin, thus acting as a 'water mill'. The team showed that the direction of propagation of the original wave determined the spinning sense of the electrons. This is only possible thanks to a very specific property of light waves guided along a surface which does not generally exist in free space, paving the way to a new understanding and new applications of spin on these guided light waves.

Dr Francisco Rodríguez-Fortuño, from the Department of Physics and one of the study's authors, said: 'It has been very encouraging for us to experimentally confirm that this optical 'watermill' was working just as we expected. This reinforces our determination to search for new insights and novel applications of spin in guided light.'

In the experiment, the team first generated a propagating along the surface of a thin gold film. This wave, called a surface plasmon, was then directed at a gold nanoparticle placed on the same surface. The interaction between them resulted in a fast spinning motion of the electrons inside the nanoparticle, in synchrony with the light's frequency. The radiation from the circular motion of the electrons in the particle was subsequently detected, and its polarization analysed, confirming experimentally the reversibility of spin conservation.

By selecting the direction of propagation of the surface wave in such a miniaturized setup, the researchers have at their disposal a flexible and integrated way to control light spin, opening new avenues for all kinds of spinoptical devices. Last year, in a paper published in Science, they demonstrated that the direction of spinning inside a nanoparticle determine the propagation direction of along a nearby surface.

Explore further: Nanoparticles break the symmetry of light

Related Stories

Nanoparticles break the symmetry of light

October 6, 2014

How can a beam of light tell the difference between left and right? At the Vienna University of Technology (TU Wien) tiny particles have been coupled to a glass fibre. The particles emit light into the fibre in such a way ...

Scientists spin photons to send light in one direction

April 19, 2013

(Phys.org) —Researchers at King's College London have achieved previously unseen levels of control over the travelling direction of electromagnetic waves in waveguides. Their ground-breaking results could have far-reaching ...

A new twist in the properties of light

April 25, 2014

Light has some well-established dynamical properties that have defined our understanding of electromagnetic radiation for over a century. Two of the most fundamental of these properties are that photons of light carry momentum ...

Researchers take magnetic waves for a spin

January 29, 2014

Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and ...

Recommended for you

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.