Muons help understand mechanism behind hydrogen storage

November 18, 2014, CORDIS

It is ever more necessary to find alternative ways to store energy. Energy storage is required when energy is supplied intermittently, as for instance for wind power, or for mobile applications like cars. Hydrogen is a promising solution due to the large amount of energy produced by its clean reaction with oxygen.

Muon spin relaxation reveals promising storage materials

To be stored, hydrogen needs to bind with some material. Li6C60 and Na10C60 fullerides are promising as they are light, easily processed by industry, and able to reversibly absorb hydrogen. It is known that they absorb up to 5 mass % of hydrogen but the mechanisms driving the absorption were not well-understood.

Scientists from the University of Parma, Uni. of Pavia, and the Institute Laue-Langevin have used muon spin relaxation to investigate hydrogenation on the Li6C60 and Na10C60. Muons capture electrons to form muonium, a light isotope of hydrogen. Thanks to this powerful technique it is possible to observe how muonium behaves and thus understand how hydrogen interacts with matter. The group has received NMI3 support to conduct experiments at the ISIS Pulsed Muon Facility.

On the way to more efficient hydrogen storage

The scientists learned that unlike many other fullerides, in Li6C60 and Na10C60, metal atoms group themselves together, which fosters the formation of muonium. This makes them perfect test- for this study.

Surprisingly, the results suggest that the hydrogenation process is more effective at very low temperatures, below -150 ⁰C, when hydrogen is atomic. So why does hydrogenation seem to perform better at high temperatures? Hydrogen (H2) first needs to dissociate into H, which will then be absorbed by the material used for storage via a chemical reaction. It is in fact the dissociation of hydrogen that requires high temperatures.

Further research on these dynamics could reveal ways to decrease the temperature required to store hydrogen and adapt these materials accordingly, making hydrogen storage more efficient and cheaper.

Explore further: A new solution for storing hydrogen fuel for alternative energy

Related Stories

Hydrogen storage in nanoparticles works

March 31, 2008

Dutch chemist Kees Baldé has demonstrated that hydrogen can be efficiently stored in nanoparticles. This allows hydrogen storage to be more easily used in mobile applications. Baldé discovered that 30 nanometre particles ...

Researchers discover promising hydrogen storage material

November 1, 2011

( -- If hydrogen is to ever to serve as an onboard energy carrier for the transportation industry, a material will be needed that can store large amounts of hydrogen at ambient temperature and pressure. So far, ...

Recommended for you

Japan to make crater on asteroid to get underground samples

March 18, 2019

Japan's space agency said Monday that its Hayabusa2 spacecraft will follow up last month's touchdown on a distant asteroid with another risky mission—dropping an explosive on the asteroid to make a crater and then collect ...

Bright X-ray galactic nuclei

March 18, 2019

All massive galaxies are believed to host supermassive black holes (SMBH) at their centers that grow by accreting mass from their environment. The current picture also imagines that the black holes grow in size as their host ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.