Ancient New Zealand 'Dawn Whale' identified

November 18, 2014, University of Otago
University of Otago researchers have described a new genus of ancient baleen whales that they have named Tohoraata (a Māori term which can be translated as Dawn Whale). The genus belongs to the toothless filter-feeding family Eomysticetidae, and it is the first time members of this family have been identified in the Southern Hemisphere. They named the younger of the two fossil whales, which may be a descendent of the elder, as Tohoraata raekohao (pictured). Raekohao means 'holes in the forehead'. Researcher Robert Boessenecker says this whale lived between 26-25 million years ago and vaguely resembles a minke whale but was more slender and serpent-like. Its skull, which contains a number of holes near its eye sockets for arteries, was probably about two metres in length and the whole animal would have been eight metres long. Credit: Robert Boessenecker

University of Otago palaeontologists are rewriting the history of New Zealand's ancient whales by describing a previously unknown genus of fossil baleen whales and two species within it.

Otago Department of Geology PhD student Robert Boessenecker and his supervisor Professor Ewan Fordyce have named the new Tohoraata, which translates as 'Dawn Whale' in Māori.

The two whales, which lived between 27-25 million years ago, were preserved in a rock formation near Duntroon in North Otago. At that time the continent of Zealandia was largely or completely under water and the whales were deposited on a continental shelf that was perhaps between 50 to 100 metres deep.

The new genus that the fossils represent belongs to the toothless filter-feeding family Eomysticetidae, and it is the first time members of this family have been identified in the Southern Hemisphere.

They named the younger of the two , which may be a descendent of the elder, as Tohoraata raekohao. Raekohao means 'holes in the forehead'.

Mr Boessenecker says this whale lived between 26-25 million years ago and vaguely resembles a minke whale but was more slender and serpent-like. Its skull, which contains a number of holes near its eye sockets for arteries, was probably about two metres in length and the whole animal would have been eight metres long.

"This new species differs from modern in having a smaller braincase and a skull that is generally much more primitive, with substantially larger attachments for jaw muscles. The lower jaw retains a very large cavity indicating that its hearing capabilities were similar to archaic whales."

The researchers also determined that the older fossil whale from the site, which was collected in 1949 and named in 1956, had been misidentified as belonging to the genus Mauicetus, a more advanced type of whale called a "cetothere". They have now changed its name from Mauicetus waitakiensis to Tohoraata waitakiensis.

Mr Boessenecker says this particular fossil had been poorly understood for more than 50 years and only with this study was it proven not to be from its originally attributed genus. The two whales have now become the first eomysticetids to be reported outside of South Carolina, USA, and Japan.

"Researchers contend with confusing or surprising fossils in museum collections all the time. Often, the best way to solve these mysteries is to go out and dig up another one, which is what Professor Fordyce and his colleagues did in 1993 when they collected the partial skull of Tohoraata raekohao."

Eomysticetids occupy an important position in the evolutionary tree of cetaceans: they are the earliest toothless baleen-bearing cetaceans, and in many characteristics are intermediate between toothed baleen whales and modern baleen whales, he says.

"They are the first baleen whales to have been completely toothless, and are therefore the earliest known cetaceans to have wholly relied upon filter feeding."

Explore further: Dwarf whale survived well into Ice Age

Related Stories

Dwarf whale survived well into Ice Age

April 4, 2013

Research from New Zealand's University of Otago detailing the fossil of a dwarf baleen whale from Northern California reveals that it avoided extinction far longer than previously thought.

Researchers reveal new New Zealand fossil dolphin

January 22, 2014

(Phys.org) —A newly recognised fossil dolphin from New Zealand, dubbed Papahu taitapu, is the first of its kind ever found and may be a close relation to the ancestors of modern dolphins and toothed whales, according to ...

Study amplifies understanding of hearing in baleen whales

April 17, 2012

For decades, scientists have known that dolphins and other toothed whales have specialized fats associated with their jaws, which efficiently convey sound waves from the ocean to their ears. But until now, the hearing systems ...

Recommended for you

Study suggests trees are crucial to the future of our cities

March 25, 2019

The shade of a single tree can provide welcome relief from the hot summer sun. But when that single tree is part of a small forest, it creates a profound cooling effect. According to a study published today in the Proceedings ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

Apple pivot led by star-packed video service

March 25, 2019

With Hollywood stars galore, Apple unveiled its streaming video plans Monday along with news and game subscription offerings as part of an effort to shift its focus to digital content and services to break free of its reliance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.