The ancient mountains that fed early life

October 16, 2014, Australian National University
Professor Joerg Hermann (L) and Professor Daniela Rubatto in the Research School of Earth Sciences

Scientists have found evidence for a huge mountain range that sustained an explosion of life on Earth 600 million years ago.

The was similar in scale to the Himalayas and spanned at least 2,500 kilometres of modern west Africa and northeast Brazil, which at that time were part of the supercontinent Gondwana.

"Just like the Himalayas, this range was eroded intensely because it was so huge. As the sediments washed into the oceans they provided the perfect nutrients for life to flourish," said Professor Daniela Rubatto of the Research School of Earth Sciences at The Australian National University (ANU).

"Scientists have speculated that such a large mountain range must have been feeding the oceans because of the way life thrived and ocean chemistry changed at this time, and finally we have found it."

The discovery is earliest evidence of Himalayan-scale mountains on Earth.

"Although the mountains have long since washed away, rocks from their roots told the story of the ancient mountain range's grandeur," said co-researcher Professor Joerg Hermann.

"The range was formed by two continents colliding. During this collision, rocks from the crust were pushed around 100 kilometres deep into the mantle, where the high temperatures and pressures formed new minerals."

As the mountains eroded, the roots came back up to the surface, to be collected in Togo, Mali and northeast Brazil, by Brazilian co-researcher Carlos Ganade de Araujo, from the University of Sao Paulo and Geological Survey of Brazil.

Dr Ganade de Araujo recognised the samples were unique and brought the rocks to ANU where, using world-leading equipment, the research team accurately identified that the rocks were of similar age, and had been formed at similar, great depths.

The research team involved specialists from a range of different areas of Earth Science sharing their knowledge, said Professor Rubatto.

Roots of the ancient mountain range, long since eroded, were found in Northeast Brazil. Credit: Carlos Ganade de Araujo

Explore further: New information about how Himalayas were formed

Related Stories

Earth's crust moves like a yo-yo: research

April 11, 2011

( -- New research from The Australian National University has shed light on the secrets of the deep Earth and will lead to better understanding of important geological processes.

Ancient rocks yield clues about Earth's earliest crust

May 29, 2014

( —It looks like just another rock, but what Jesse Reimink holds in his hands is a four-billion-year-old chunk of an ancient protocontinent that holds clues about how the Earth's first continents formed.

Rainwater discovered at new depths

July 15, 2014

University of Southampton researchers have found that rainwater can penetrate below the Earth's fractured upper crust, which could have major implications for our understanding of earthquakes and the generation of valuable ...

Curvy mountain belts

June 29, 2012

Mountain belts on Earth are most commonly formed by collision of one or more tectonic plates. The process of collision, uplift, and subsequent erosion of long mountain belts often produces profound global effects, including ...

Recommended for you

Arctic wintertime sea ice extent is among lowest on record

March 23, 2018

Sea ice in the Arctic grew to its annual maximum extent last week, and joined 2015, 2016 and 2017 as the four lowest maximum extents on record, according to scientists at the NASA-supported National Snow and Ice Data Center ...

Germany was covered by glaciers 450,000 years ago

March 23, 2018

The timing of the Middle Pleistocene glacial-interglacial cycles and the feedback mechanisms between climatic shifts and earth-surface processes are still poorly understood. This is largely due to the fact that chronological ...

Wood pellets: Renewable, but not carbon neutral

March 22, 2018

A return to firewood is bad for forests and the climate. So reports William Schlesinger, President Emeritus of the Cary Institute of Ecosystem Studies, in an Insights article published today in the journal Science.

The tradeoffs inherent in earthquake early warning systems

March 22, 2018

A team of researchers with the U.S. Geological Survey and the California Institute of Technology has found that modern earthquake early warning (EEW) systems require those interpreting their messages to take into consideration ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 21, 2014
Nice science. The video would benefit from sub-titles. Took me a second playing to figure out the word 'uranium' at one point!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.