Enhancing the mixing of viscous fluids for chemical reactions

September 10, 2014, Agency for Science, Technology and Research (A*STAR), Singapore
Enhancing the mixing of viscous fluids for chemical reactions
Top (left) and side (right) views of the device. Fluid flow causes the diaphragm to undergo elastic oscillations, producing an oscillatory flow at the outlet. Credit: AIP Publishing LLC

Devices that manipulate very small volumes of fluids are applied in diverse fields, including printer technology, DNA processing and cooling systems for electronics. For some processes involving fluids, such as mixing, it is useful to generate oscillating flows, but this can be difficult for particularly viscous fluids. Now, A*STAR researchers have developed a microfluidic oscillator that produces oscillations even in very viscous fluids.

"In miniaturized fluidic devices, the of the fluid dominates the , and mixing becomes a challenging task," says Huanming Xia from the A*STAR Singapore Institute of Manufacturing Technology (SIMTech), who led the study with co-workers at SIMTech and the A*STAR Institute of High Performance Computing. "The microfluidic oscillator is a part of our continuous effort to solve this problem."

Microfluidic valves and pumps have diaphragms, which are usually made from soft materials, such as rubber, and are operated via external forces. Yet the tiny device, less than 4 millimeters in size, developed by Xia's team does not need external control. Instead, when the diaphragm is placed in a fluid flow, it responds elastically by wiggling up and down to make the device oscillate automatically (see image). To adapt the design for use with very viscous fluids, the researchers replaced the rubber diaphragm with one made from copper and beryllium foil.

While this device has practical benefits, it also raises theoretical implications about the behavior of microfluidic oscillators. The team found that at low fluid pressures, the flow across the diaphragm does not oscillate. Then, above a particular transition pressure, the flow rate drops and oscillatory flow occurs, increasing in frequency as pressure increases. After performing experimental and theoretical tests for different device shapes, fluid viscosities and thicknesses, Xia's team could expand current theories.

"Flow-induced vibrations are usually related to flow instabilities and analyzed using a spring–mass model," explains Xia. The transition from laminar flow to oscillatory flow in their new oscillator was counterintuitive, because increased pressure led to reduced flow rates. The team recognized that this behavior was similar to 'negative differential resistance'—a well-established concept that describes certain electric circuits in which an increased voltage leads to a lower current.

Xia's team is currently developing a complete mathematical model of their device using negative resistance and other concepts 'borrowed' from electric circuit theory. This should assist them to optimize the device design for practical applications; for example, the enhanced mixing of viscous fluids enabled by the can intensify and control chemical reactions.

Explore further: Microfluidics: Creating chaos

More information: Xia, H. M., Wang, Z. P., Nguyen, V. B., Ng, S. H., Wang, W. et al. "Analyzing the transition pressure and viscosity limit of a hydroelastic microfluidic oscillator." Applied Physics Letters 104, 024101 (2014). dx.doi.org/10.1063/1.4861778

Related Stories

Microfluidics: Creating chaos

May 10, 2012

A quiet revolution is taking place in the fields of biology and chemistry. Microfluidic devices, which allow fluid manipulation in micro-scale channels, are slowly but surely finding their place on the lab bench. A new microfluidic ...

Cilia of Vorticella for active microfluidic mixing

March 3, 2014

Active elements are fundamental components of many microsystems. Traditional elements with nonliving, artificial actuators require an external power source for operation, with magnetic and electric fields necessary to drive ...

New technique controls fluids at the nanoscale

June 30, 2014

(Phys.org) —Researchers at Swinburne University of Technology have revealed a revolutionary method of pumping fluid at the nanoscale level that has potential use for desalinating water and lab-on-a-chip devices.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.