The future of global agriculture may include new land, fewer harvests

September 17, 2014, Public Library of Science

Climate change may expand suitable cropland, particularly in the Northern high latitudes, but tropical regions may becoming decreasingly suitable, according to a study published September 17, 2014 in the open-access journal PLOS ONE by Florian Zabel from Ludwig Maximilians University, Germany and colleagues.

Most of the Earth's accessible agricultural land are already under cultivation. Ecological factors such as climate, , water supply and topography determine the suitability of land for agriculture. Climate change may impact , but some regions may benefit from it. In a new study, researchers focused on the probable impact of on the supply of land suitable for the cultivation of the 16 major food and worldwide, including staples such as maize, rice, soybeans and wheat. They simulated the impact of climate change on agricultural production over the course of the 21st century and found that two-thirds of all land potentially suitable for agricultural use is already under cultivation.

The results indicate that climate change may expand the supply of cropland in the high latitudes of the Northern hemisphere, including Canada, Russia, China, over the next 100 years. However, in the absence of adaptation measures such as increased irrigation, the simulation projects a significant loss of suitable agricultural land in Mediterranean regions and in parts of Sub-Saharan Africa. The land suitable for agricultural would be about 54 million km2 – and of this, 91% is already under cultivation. "Much of the additional area is, however, at best only moderately suited to agricultural use, so the proportion of highly fertile land used for crop production will decrease," says Zabel. Moreover, in the of Brazil, Asia and Central Africa, climate change will significantly reduce the chance of obtaining multiple harvests per year.

"In the context of current projections, which predict that the demand for food will double by the year 2050 as the result of population increase, our results are quite alarming. In addition, one must consider the prospect of increased pressure on land resources for the cultivation of forage crops and animal feed owing to rising demand for meat, and the expansion of land use for the production of bioenergy," says Zabel.

Explore further: Researcher studies impact of increased sugarcane production

More information: PLOS ONE , dx.plos.org/10.1371/journal.pone.0107522

Related Stories

Changing global diets is vital to reducing climate change

August 31, 2014

A new study, published today in Nature Climate Change, suggests that – if current trends continue – food production alone will reach, if not exceed, the global targets for total greenhouse gas (GHG) emissions in 2050.

Recommended for you

Palm oil: The carbon cost of deforestation

June 19, 2018

A recent study by EPFL and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) shows that intensive farming of palm oil has a major impact on the environment. Both short- and long-term solutions exist, ...

Coral reef 'oases' offer glimmer of hope

June 18, 2018

The identification of small 'oases' in the world's oceans, where corals appear to be thriving, could offer vital insights in the race to save one of the world's most threatened ecosystems.

Checking China's pollution by satellite

June 18, 2018

Air pollution has smothered China's cities in recent decades. In response, the Chinese government has implemented measures to clean up its skies. But are those policies effective? Now an innovative study co-authored by an ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.