Discovery about wound healing key to understanding cell movement

August 6, 2014, University of Waterloo
This image depicts a wound in the process of healing.The drawstring fragments along the wound edge are shown in bright yellow, the cell extensions associated with crawling are red, and the cell nuclei are blue. Credit: Ester Anon

Research by a civil engineer from the University of Waterloo is helping shed light on the way wounds heal and may someday have implications for understanding how cancer spreads, as well as why certain birth defects occur.

Professor Wayne Brodland is developing computational models for studying the mechanical interactions between . In this project, he worked with a team of international researchers who found that the way wounds knit together is more complex than we thought. The results were published this week in the journal, Nature Physics.

"When people think of , they probably think of bridges and roads, not the human body," said Professor Brodland. "Like a number of my colleagues, I study structures, but ones that happen to be very small, and under certain conditions they cause cells to move. The models we build allow us to replicate these movements and figure out how they are driven."

When you cut yourself, a scar remains, but not so in the cells the team studied. The researchers found that an injury closes by cells crawling to the site and by contraction of a drawstring-like structure that forms along the wound edge. They were surprised to find that the drawstring works fine even when it contains naturally occurring breaks.

This knowledge could be the first step on a long road towards making real progress in addressing some major health challenges.

"The work is important because it helps us to understand how cells move. We hope that someday this knowledge will help us to eliminate malformation birth defects, such as , and stop from spreading," said Professor Brodland.

Explore further: Stem cells may be more widespread and with greater potential than previously believed

More information: Nature Physics, www.nature.com/nphys/journal/v … /full/nphys3040.html

Related Stories

Recommended for you

On the rebound

January 22, 2018

Our bodies have a remarkable ability to heal from broken ankles or dislocated wrists. Now, a new study has shown that some nanoparticles can also "self-heal" after experiencing intense strain, once that strain is removed.

Nanoparticle gel controls twisted light with magnetism

January 22, 2018

"Help me, Obi Wan Kenobi. You're my only hope." For many of those around at the release of Star Wars in 1977, that scene was a first introduction to holograms—a real technology that had been around for roughly 15 years.

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.