Brain-on-a-chip axonal strain injury model highlights mitochondrial membrane potential threshold

July 17, 2014, World Scientific Publishing

Researchers from the Biomedical Engineering Department of Rutgers, The State University of New Jersey recently demonstrated the use of their "Brain-on-a-Chip" microsystem to assess specific effects of traumatic axonal injury. While their model uses the three dimensional cell structure and networks found in intact animals, it is capable of visualizing individual axons and their responses to mechanical injury. This is done by utilizing organotypic slices taken from specific areas in the brain that are susceptible to injury during a traumatic brain injury event.

"What's really nice about the system is that it is very versatile, in that specific physiologically relevant pathways or networks can be monitored depending on the orientation of the slices placed in the device, or by which brain slices are used," says Jean-Pierre Doll, Ph.D, lead author. Through the use of very small microchannels, the authors direct the natural response of brain slices to extend axons to connect one brain slice to another. Once the extending axons have traversed the distance and made functional connections between the brain slices, these axons are ready to be selectively injured.

This innovative approach was used to characterize the biochemical changes that are induced following traumatic axonal and highlights an apparent injury threshold that exists in axonal mitochondria. Their research shows that below the injury threshold mitochondria undergo a delayed hyperpolarization, whereas above the threshold they immediately depolarize. Using their system, the authors tested a novel therapeutic candidate, in which they showed that the sodium/hydrogen exchange inhibitor EIPA could significantly reduce the mitochondrial responses to injury resulting in an overall improvement in axonal health.

"Since therapeutic options are currently limited, these results are exciting and highlight the value of our brain-on-a-chip technology that can be used for high-throughput screens of potential agents to ameliorate the consequences of diffuse axonal injury, which often accompanies " says senior author Martin Yarmush MD, Ph.D.

Explore further: Even mild traumatic brain injury may cause brain damage

More information: Additional co-authors of the TECHNOLOGY paper are Rene R. Schloss Ph.D from Biomedical Engineering, Rutgers University and Barclay Morrison III Ph.D from Biomedical Engineering, Columbia University.

Related Stories

Even mild traumatic brain injury may cause brain damage

July 16, 2014

Even mild traumatic brain injury may cause brain damage and thinking and memory problems, according to a study published in the July 16, 2014, online issue of Neurology, the medical journal of the American Academy of Neurology.

Imaging shows some brains compensate after traumatic injury

November 26, 2012

Using a special magnetic resonance imaging (MRI) technique to image patients with mild traumatic brain injury (MTBI), researchers have identified a biomarker that may predict which patients will do well over the long term, ...

Recommended for you

Cryptocurrency rivals snap at Bitcoin's heels

January 14, 2018

Bitcoin may be the most famous cryptocurrency but, despite a dizzying rise, it's not the most lucrative one and far from alone in a universe that counts 1,400 rivals, and counting.

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.