Snapshots of atoms make it into physics textbooks

June 6, 2014
Snapshots of atoms make it into physics textbooks
Figure 1. This image by NewScientist shows Stodólnas snapshots of hydrogen atoms at four different energy levels. The different colors depict the electron density around the atomic nucleus.

Physicist Aneta Stodólna captured the electron positions of hydrogen atoms on camera for the very first time. The snapshots from her quantum-style microscope gained worldwide attention and even made it into physics textbooks. On 20 June 2014, Aneta Stodólna will obtain her doctorate from Radboud University.

'Other physicists already dreamed up the technique we used over 30 years ago', Stodólna explains, 'but we were the first to actually make a functional quantum microscope for hydrogen atoms and take pictures with it. That way we can determine the locations of an atom's electrons and with that, the atom's properties. It was a real challenge though, at some point I thought we would never get the set-up to work. I was so relieved when we found the right signal after months of puzzling. I knew that this result was really, really big.

Proof of principle

Stodólnas experimental set-up made use of 'velocity map imaging', a technique originally invented in Nijmegen by professor David Parker, experimental physicist at the molecular and laser physics department. He explains: 'These images finally visualized of what we thought we knew about the wave function. Or actually, what we hoped we knew. Anetas results are a beautiful step forward in physics, they are the most direct and convincing proof of principle of an atom's wave function I've seen so far.'

Atom snapshots go worldwide

The images made in into Physics Review Letters in May 2013 and gained worldwide attention from physicists and the general public afterwards. PhysicsWorld magazine chose the publication as one of the top 10 breakthroughs in in 2013 and Stodólnas work is already included in several textbooks.

Explore further: Physicists provide experimental proof of theorized Efimov states

More information: Doctoral defence: Taking snapshots of atomic wave functions with a photoionization microscope: www.ru.nl/@936142/taking-snapshots/

Publication: Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States , Phys. Rev. Lett. 110, 213001 – Published 20 May 2013 : journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.213001

Related Stories

Hydrogen atoms under the magnifying glass

May 22, 2013

To describe the microscopic properties of matter and its interaction with the external world, quantum mechanics uses wave functions, whose structure and time dependence is governed by the Schrödinger equation. In atoms, ...

Recommended for you

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Phase transition discovery opens the door to new electronics

January 16, 2017

A group of European scientists led by researchers at TU Delft has discovered how phase transitions propagate throughout materials called nickelates. The discovery improves our understanding of these novel materials, which ...

Electron diffraction locates hydrogen atoms

January 13, 2017

Diffraction-based analytical methods are widely used in laboratories, but they struggle to study samples that are smaller than a micrometer in size. Researchers from the Laboratoire de cristallographie et sciences des matériaux ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

swordsman
1 / 5 (1) Jun 07, 2014
"The electron density around the nucleus"? There is only one electron in a hydrogen atom. Need more explanation.
Incosa
not rated yet Jun 07, 2014
We could read about it before year already.
Need more explanation
The electrons are doing deBroglie pilot waves inside of vacuum foam around itself during their motion. These waves interfere and resonate mutually and they're making vacuum foam more dense at the volume areas, where positive interference occurs - which slows down the motion of electrons. The occurrence of electrons at such places is therefore more probable, than at the places, where these waves don't interfere positively. Such an effects can be observed even with wake waves around boat at the water surface, if we consider, that the water surface has a larger specific area, when it gets undulated with the motion of boat. It's essentially classical, but extra-dimensional physics: the boat which interfere only with surface ripples each other cannot "perceive" their motion and displacement in another dimension.
arom
Jun 09, 2014
This comment has been removed by a moderator.
Noumenon
not rated yet Jun 09, 2014
"The electron density around the nucleus"? There is only one electron in a hydrogen atom. Need more explanation.


Don't listen to the two cranks above. The images are composite and represent probability densities of electron positions. Read the paragraph under "an atom undressed".

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.