Laser-powered farewell to Moon mission

April 28, 2014
LADEE sends data via laser. Credit: NASA

( —Just before NASA's latest Moon mission ended last week, an ESA telescope received laser signals from the spacecraft, achieving data speeds like those used by many to watch movies at home via fibre-optic Internet.

During an intense, three-day effort starting on 1 April, ESA's Optical Ground Station in Spain received data signals via from the Moon at the stunning speed of 80 megabits per second.

The signals were transmitted from NASA's Lunar Atmosphere and Dust Environment Explorer, or LADEE, from a distance of 400 000 km. LADEE completed its seven-month exploration and technology mission on 17 April in a planned impact on the Moon.

The speed is high enough to transmit an entire movie DVD in about eight minutes and is many times faster than provided by traditional radio links used by today's spacecraft.

Faster than traditional radio

"We had already achieved 40 Mbit/s in our first round of with LADEE in October, so we're pretty happy that the final test transmissions were able to double that," says Klaus-Juergen Schulz, responsible for tracking station engineering at ESA's ESOC operations centre.

"We also demonstrated that we could transmit laser signals to LADEE and even obtain highly accurate range data, just like our traditional but much larger radio tracking stations can. Overall, the test series has been a big success."

ESA's Optical Ground Station houses the Lunar Lasercom Optical Ground System. Credit: ESA

ESA's station in Spain's Canary Islands was equipped with advanced technology developed in Switzerland, France and Denmark that could communicate with LADEE using infrared laser beams.

LADEE made space history on 18 October 2013, just weeks after its September launch, when it made the first-ever laser transmission from lunar orbit, picked up by a NASA station at White Sands, New Mexico, USA.

The final ESA–NASA tests capped European participation in NASA's project to test laser communications for space missions.

Laser communications in the near-infrared may be the way of the future when it comes to downloading massive amounts of data from spacecraft orbiting Earth, Mars or even more distant planets.

Smaller and lighter laser light

Laser units are lighter and smaller than today's onboard radio systems, promising to cut mission costs and provide increased return of science data.

ESA's Malargüe tracking station. Credit: ESA/U. Kugel

To achieve the 80 Mbit/s, ESA's station was upgraded with a new prototype detector built by France's research and development Institute CEA-Leti.

ESA will now refine the European laser communication technology to support live tests in the near future with other missions. These include NASA's OPALS system, recently delivered to the International Space Station, and Japan's Small Optical Transponder for Micro-Satellite mission.

"To deploy laser communication technology in space, cooperation is vital," says Zoran Sodnik, ESA's project manager for laser communications.

"There are not yet so many ground stations equipped to participate, and it's extremely positive for ESA to be involved right from the start. It's definitely one solution to achieve the extremely high data rates that will be required in the future."

Explore further: Moon mission beams laser data to ESA station

Related Stories

Moon mission beams laser data to ESA station

November 3, 2013

( —ESA's ground station on the island of Tenerife has received laser signals over a distance of 400 000 km from NASA's latest Moon orbiter. The data were delivered many times faster than possible with traditional ...

Laser communications set for Moon mission

July 30, 2013

An advanced laser system offering vastly faster data speeds is now ready for linking with spacecraft beyond our planet following a series of crucial ground tests. Later this year, ESA's observatory in Spain will use the laser ...

LADEE mission ends with planned lunar impact

April 18, 2014

( —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface of the moon, as planned, ...

Historic demonstration proves laser communication possible

October 28, 2013

In the early morning hours of Oct. 18, NASA's Lunar Laser Communication Demonstration (LLCD) made history, transmitting data from lunar orbit to Earth at a rate of 622 Megabits-per-second (Mbps). That download rate is more ...

Recommended for you

Dawn mission extended at Ceres

October 20, 2017

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.