Moon mission beams laser data to ESA station

November 3, 2013
The first LADEE laser signal was acquired by ESA’s Optical ground Station, Tenerife, Spain, at 06:36 GMT on 26 October 2013. The light beam from the Moon was transmitted at 1550 nm wavelength. Credit: ESA

(Phys.org) —ESA's ground station on the island of Tenerife has received laser signals over a distance of 400 000 km from NASA's latest Moon orbiter. The data were delivered many times faster than possible with traditional radio waves, marking a significant breakthrough in space communications.

The Lunar Atmosphere and Dust Environment Explorer, or LADEE, was launched on 7 September and arrived in orbit around the Moon in October. In addition to probing the Moon's environment, it's also carrying a new laser terminal.

This new approach promises data speeds far superior to traditional radio waves used today by satellites and ground stations, including the Agency's Estrack network.

ESA's Optical Ground Station in Spain's Canary Islands was upgraded with an advanced laser terminal developed in Switzerland and Denmark that can communicate with LADEE using highly focused beams.

"We acquired the first signals from LADEE on 26 October, and since then, we've had a series of optical uplinks and downlinks providing extremely fast laser communications," says Zoran Sodnik, ESA's project manager for the laser effort.

"We've already received data at up to 40 Mbit/s – several times faster than a typical home broadband connection."

The contact with Tenerife came just days after LADEE made history on 18 October in the first-ever laser transmission from lunar orbit, picked up by a NASA station at White Sands, New Mexico, USA. The craft is also transmitting to a third station, at NASA's Jet Propulsion Laboratory in California.

Laser communications at near-infrared wavelengths may be the way of the future when it comes to downloading massive amounts of data from spacecraft orbiting Earth, Mars or even more distant planets.

Laser communication units are lighter and smaller than today's onboard radio systems, promising to cut mission costs and provide opportunities for new science payloads.

"The participation of the ESA ground terminal at Tenerife in NASA's project is an important milestone in this new capability," said Badri Younes, deputy associate administrator for and navigation at NASA's Headquarters in Washington DC.

"Together, we have demonstrated at the very beginning of the optical communication era the value of interoperable communication between our space agencies."

With the first two communication passes with LADEE on 26 October and six more to 29 October, the ESA team on Tenerife are tweaking the station hardware – especially for the uplink – and improving procedures.

"Some initial difficulties with the extremely accurate pointing necessary for communication are being investigated, but this is quite normal at this stage," says ESA's Klaus-Juergen Schulz, responsible for ground station systems at the European Space Operations Centre, Darmstadt, Germany.

"We are already confident that the test campaign will confirm the practicality of high-data-rate optical links for future missions."

During the coming weeks, ESA engineers will test uplink communications at 20 Mbit/s and obtain accurate 'time-of-travel' measurements to be used for calculating the spacecraft's orbit.

Using special equipment from the DLR German Aerospace Center's Institute for Communication and Navigation, the team will monitor atmospheric conditions during transmission and learn how to improve performance even further.

Explore further: Laser communications set for Moon mission

More information: www.esa.int/Our_Activities/Ope … ommunication_project

Related Stories

Laser communications set for Moon mission

July 30, 2013

An advanced laser system offering vastly faster data speeds is now ready for linking with spacecraft beyond our planet following a series of crucial ground tests. Later this year, ESA's observatory in Spain will use the laser ...

Historic demonstration proves laser communication possible

October 28, 2013

In the early morning hours of Oct. 18, NASA's Lunar Laser Communication Demonstration (LLCD) made history, transmitting data from lunar orbit to Earth at a rate of 622 Megabits-per-second (Mbps). That download rate is more ...

Space laser to prove increased broadband possible

August 28, 2013

When NASA's Lunar Laser Communication Demonstration (LLCD) begins operation aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission managed by NASA's Ames Research Center in Moffett Field, Calif., it will ...

NASA's OPALS to beam data from space via laser

July 11, 2013

(Phys.org) —NASA will use the International Space Station to test a new communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific ...

Recommended for you

New quasar discovered by astronomers

September 19, 2017

(Phys.org)—A team of astronomers led by Jacob M. Robertson of the Austin Peay State University in Clarksville, Tennessee has detected a new quasi-stellar object (QSO). They found the new quasar, designated SDSS J022155.26-064916.6, ...

The cosmic water trail uncovered by Herschel

September 19, 2017

During almost four years of observing the cosmos, the Herschel Space Observatory traced out the presence of water. With its unprecedented sensitivity and spectral resolution at key wavelengths, Herschel revealed this crucial ...

What do we need to know to mine an asteroid?

September 19, 2017

The mining of resources contained in asteroids, for use as propellant, building materials or in life-support systems, has the potential to revolutionise exploration of our Solar System. To make this concept a reality, we ...

A day in the life of NASA's Voyagers

September 19, 2017

At more than 10 billion miles away from Earth, there is no day and night. Time and space are fathomless and our Sun is a distant point of starlight—a faint reminder of the home NASA's twin Voyagers, humanity's farthest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.