New genome-editing platform significantly increases accuracy of CRISPR-based systems

April 25, 2014

A next-generation genome editing system developed by Massachusetts General Hospital (MGH) investigators substantially decreases the risk of producing unwanted, off-target gene mutations. In a paper receiving online publication in Nature Biotechnology, the researchers report a new CRISPR-based RNA-guided nuclease technology that uses two guide RNAs, significantly reducing the chance of cutting through DNA strands at mismatched sites.

"This system combines the ease of use of the widely adopted CRISPR/Cas system with a dimerization-dependent nuclease activity that confers higher specificity of action," says J. Keith Joung, MD, PhD, associate chief for Research in the MGH Department of Pathology and senior author of the report. "Higher specificity will be essential for any future clinical use of these nucleases, and the new class of proteins we describe could provide an important option for therapeutic ."

Engineered CRISPR-Cas nucleases – genome-editing tools that combine a short RNA segment matching its DNA target with a DNA-cutting enzyme called Cas9 – have been the subject of much investigation since their initial development in 2012. Easier to use than the earlier ZFN (zinc finger nuclease) and TALEN (transcription activator-like effector nuclease) systems, they have successfully induced genomic changes in several animal models systems and in human cells. But in a previous Nature Biotechnology paper published in June 2013, Joung's team reported that CRISPR-Cas nucleases could produce additional mutations in human cells, even at sites that differed from the DNA target by as much as five nucleotides.

To address this situation, the investigators developed a new platform in which the targeting function of Cas9 was fused to a nuclease derived from a well-characterized enzyme called Fokl, which only functions when two copies of the molecule are paired, a relationship called dimerization. This change essentially doubled the length of DNA that must be recognized for cleavage by these new CRISPR RNA-guided Fokl nucleases (RFNs), significantly increasing the precision of genome editing in . Importantly, Joung and his colleagues also demonstrated that these new RFNs are as effective at on-target modification as existing Cas9 nucleases that target a shorter DNA sequence.

"By doubling the length of the recognized DNA sequence, we have developed a new class of genome -editing tools with substantially improved fidelity compared with existing wild-type Cas9 nucleases and nickases (enzymes that cleave a single DNA strand)," says Joung, an associate professor of Pathology at Harvard Medical School. The research team also has developed software enabling users to identify potential target sites for these RFNs and incorporated that capability into ZiFiT Targeter, a software package freely available at http://zifit.partners.org.

Explore further: Shortening guide RNA markedly improves specificity of CRISPR-Cas nucleases

Related Stories

Structure of key CRISPR complex revealed

February 13, 2014

Researchers from the Broad Institute and MIT have teamed up with colleagues from the University of Tokyo to form the first high definition picture of the Cas9 complex – a key part of the CRISPR-Cas system used by scientists ...

Puzzling question in bacterial immune system answered

January 29, 2014

(Phys.org) —A central question has been answered regarding a protein that plays an essential role in the bacterial immune system and is fast becoming a valuable tool for genetic engineering. A team of researchers with the ...

Recommended for you

Researchers find means by which mushrooms glow

April 27, 2017

(Phys.org)—A team of researchers from Russia, Brazil and Japan has uncovered the means by which two kinds of mushrooms glow in the dark. In their paper published on the open-access site Science Advances, the group describes ...

Using rooster testes to learn how the body fights viruses

April 27, 2017

Our bodies are constantly under siege by foreign invaders; viruses, bacteria and parasites that want to infiltrate our cells. A new study in the journal eLife sheds light on how germ cells - sperm and egg - protect themselves ...

Fukomys livingstoni, I presume?

April 27, 2017

Two new species of African mole-rat have been discovered by researchers at Queen Mary University of London (QMUL), together with colleagues in Tanzania and at the University of Pretoria.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.