Atom probe assisted dating of oldest piece of earth

April 21, 2014 by Thomas Kelly
Samples are readied for analysis in an advanced atom probe invented in the 1990s by Thomas Kelly, when he was a professor of materials science and engineering at the University of Wisconsin–Madison. The probes, produced by scientific instrument maker CAMECA in Fitchburg, Wis., can measure the atomic composition of ultra-small samples. The precision instruments are sold around the world to researchers in government, industry and academia. Credit: David Tenenbaum/University Communications

( —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal found in Australia to 4.4 billion years ago. The date, after all, was only 100 million years after Earth started to solidify from a ball of molten rock.

Skeptics questioned the dating, saying the instrument used to count atoms looked too broadly at the tiny crystal, called a zircon. Then, in 2013, Valley's colleagues at CAMECA, a scientific instrument maker with an American headquarters in Fitchburg, Wis., put the zircon inside an ultra-precise atom probe and, Valley says, got "data that answered the most serious of the challenges going back to 2001."

The concept for the atom probe dates to the 1930s, says Thomas Kelly, who was a professor of material science and engineering at UW-Madison for 18 years. In the 1980s, he heard George Smith at Oxford University describe his advances with the technology, and "sat there with my jaw dropping."

An atom probe uses a strong electric field to draw ionized atoms from a tiny needle of the sample material. As the atoms are electrically attracted to a positive electrode, the machine measures how long each atom needs to travel that short distance, and then calculates its mass and thus its identity.

The modern, made-in-Wisconsin atom probe that Valley used to pin down the age of the oldest crystal can measure individual atoms in a circle 100 billionths of a meter in diameter - far thinner than a human hair.

In 1989, Kelly brought some steel samples to Smith for analysis, only to learn that the revolutionary 3-D atom probe would need a week to measure the million atoms needed for the analysis. That gave him time to think up a better way, and he decided that stimulating the sample with an electron beam would increase the collection rate.

"I thought this could work," Kelly says, "so a couple of my students changed what they were doing and began to calculate the properties of an atom probe that was pulsed at a high rate with an . Eventually, we switched to lasers and a new electrode geometry."

By 1999, Kelly had the foundations for a company, which he called Imago, and in 2001 he resigned his tenured position at UW-Madison. Imago acquired exclusive licenses for Kelly's patents, which had been assigned to the Wisconsin Alumni Research Foundation.

There were the obvious difficulties, especially in getting enough investment to sustain the company. Looking back from the vantage point of 2014, Kelly says, "It's fair to say this product has revolutionized atom probe technology. Most major universities with a microscopy center would like to have an atom probe. A decade ago, I would have to spend 10 minutes at a meeting, explaining what an atom probe is; that's no longer necessary."

In 2010, Imago was sold to Ametek, a Philadelphia firm, which already owned CAMECA, headquartered in Paris. CAMECA's Fitchburg location employs about 50 people - more than half of whom are UW-Madison graduates - designing, making and selling the probes. As an Ametek vice-president, Kelly directs long-range research at Fitchburg.

Institutions that buy the $2.5 million instruments need to know atomic compositions at tiny scales, and include Kelly's old department, the UW-Madison Department of Materials Science and Engineering, where Kelly is an honorary fellow. Leading computer chip makers, including Samsung, IBM and Intel, have also bought the probes.

"Semiconductor makers are at an early stage of learning how this can be valuable to them," Kelly says. "We could see sales dramatically increase in semiconductors, especially as they continue to decrease the size of features on chips."

With customers around the world, and corporate headquarters in Philadelphia, why is CAMECA still on the outskirts of Madison? "I learned from venture capitalists long ago that the company is the people. If you try move a company like this, maybe 30 percent move. People have family here, a life here, and they are not all going to pick that up."

Generally, atom probes, like other scientific instruments, labor in obscurity, but the ancient crystal has been a major exception as it made headlines around the world. Kelly says his work with Valley has been "a very good marriage between scientists who don't know much about geology, and geologists who don't know much about atom probes. It's been very rewarding for us.

"To think that we have the opportunity, from a few million atoms, to say something about the history of the solar system and potentially beyond. It's the finest scale of matter telling us about the grandest scale of matter."

Explore further: Oldest bit of crust firms up idea of a cool early Earth

Related Stories

Oldest bit of crust firms up idea of a cool early Earth

February 23, 2014

With the help of a tiny fragment of zircon extracted from a remote rock outcrop in Australia, the picture of how our planet became habitable to life about 4.4 billion years ago is coming into sharper focus.

Tiny step edges, big step for surface science

April 9, 2014

An interesting effect could help build better solar cells and create better chemical catalysts: If a titanium oxide surface is completely flat, the electrons inside the material can move freely. But if there are tiny step ...

New 'switch' could power quantum computing

April 9, 2014

Using a laser to place individual rubidium atoms near the surface of a lattice of light, scientists at MIT and Harvard University have developed a new method for connecting particles—one that could help in the development ...

Scientists create super X-rays

November 18, 2013

A new X-ray laboratory at the University of Melbourne houses the most powerful X-ray machine in Australia.

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

An ultradilute quantum liquid made from ultra-cold atoms

December 14, 2017

ICFO researchers created a novel type of liquid 100 million times more dilute than water and 1 million times thinner than air. The experiments, published in Science, exploit a fascinating quantum effect to produce droplets ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 22, 2014
Never mind to answer the question posed in the title. Advertising alone makes the reader's day. What a shame.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.