A 'shark's eye' view: Witnessing the life of a top predator

February 27, 2014
AGU: A 'shark's eye' view: Witnessing the life of a top predator
A sixgill shark with a combined sensor and video recorder attached to it swims through the ocean. The instruments are giving scientists a “shark’s eye” view of the ocean and revealing new findings about shark behavior, according to research being presented at the Ocean Sciences Meeting. Credit: Mark Royer/University of Hawaii

Instruments strapped onto and ingested by sharks are revealing novel insights into how one of the most feared and least understood ocean predators swims, eats and lives.

For the first time, researchers at the University of Hawaii and the University of Tokyo outfitted sharks with sophisticated sensors and video recorders to measure and see where they are going, how they are getting there, and what they are doing once they reach their destinations.

Scientists are also piloting a project using instruments ingested by sharks and other top ocean predators, like tuna, to gain new awareness into these animals' feeding habits. The instruments, which use electrical measurements to track ingestion and digestion of prey, can help researchers understand where, when and how much sharks and other predators are eating, and what they are feasting on.

The instruments are providing scientists with a "shark's eye" view of the ocean and greater understanding than ever before of the lives of these fish in their natural environment.

"What we are doing is really trying to fill out the detail of what their role is in the ocean," said Carl Meyer, an assistant researcher at the Hawaii Institute of Marine Biology at the University of Hawaii at Manoa. "It is all about getting a much deeper understanding of sharks' ecological role in the ocean, which is important to the health of the ocean and, by extension, to our own well-being."

The video will load shortly

Using the sensors and video recorders, the researchers captured unprecedented images of sharks of different species swimming in schools, interacting with other fish and moving in repetitive loops across the sea bed. They also found that sharks used powered swimming more often than a gliding motion to move through the ocean, contrary to what scientists had previously thought, and that deep-sea sharks swim in slow motion compared to shallow water species.

"These instrument packages are like flight data recorders for sharks," Meyer said. "They allow us to quantify a variety of different things that we haven't been able to quantify before."

"It has really drawn back the veil on what these animals do and answered some longstanding questions," he added.

Meyer and Kim Holland, a researcher also at the Hawaii Institute of Marine Biology, are presenting the new research today at the 2014 Ocean Sciences Meeting co-sponsored by the Association for the Sciences of Limnology and Oceanography, The Oceanography Society and the American Geophysical Union.

Sharks are at the top of the ocean food chain, Meyer noted, making them an important part of the marine ecosystem, and knowing more about these fish helps scientists better understand the flow of energy through the . Until now, have mainly been observed in captivity, and have been tracked only to see where they traveled.

These new observations could help shape conservation and resource management efforts, and inform public safety measures, Holland said. The instruments being used by scientists to study feeding habits could also have commercial uses, including for aquaculture, he added.

Explore further: Anti-shark devices popular on Maui after attacks

Related Stories

Anti-shark devices popular on Maui after attacks

January 24, 2014

A surge in shark attacks on Maui over the past year, including two fatal ones, hasn't stopped people from surfing and swimming in the warm ocean waters that surround the Hawaii island. But it has spurred sales of devices ...

Fear of sharks helps preserve balance in the world's oceans

June 4, 2013

(Phys.org) —A prey's fear of a shark is critical to protecting ocean biodiversity, according to researchers at Florida International University. Without this fear, a cascading effect within the ecosystem could destabilize ...

Sharks stun sardine prey with tail-slaps

July 10, 2013

Thresher sharks hunt schooling sardines in the waters off a small coral island in the Philippines by rapidly slapping their tails hard enough to stun or kill several of the smaller fish at once, according to research published ...

Recommended for you

Knowledge gap on the origin of sex

May 26, 2017

There are significant gaps in our knowledge on the evolution of sex, according to a research review on sex chromosomes from Lund University in Sweden. Even after more than a century of study, researchers do not know enough ...

The high cost of communication among social bees

May 26, 2017

(Phys.org)—Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Why communication is vital—even among plants and funghi

May 26, 2017

Plant scientists at the University of Cambridge have found a plant protein indispensable for communication early in the formation of symbiosis - the mutually beneficial relationship between plants and fungi. Symbiosis significantly ...

Darwin was right: Females prefer sex with good listeners

May 26, 2017

Almost 150 years after Charles Darwin first proposed a little-known prediction from his theory of sexual selection, researchers have found that male moths with larger antennae are better at detecting female signals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.