Environmental factors may not play a large role in the establishment of new plant species

February 20, 2014
Output for Larrea tridentata (creosote bush) diploid and polyploid populations that shows that both ploidies share similar climate habitats, but differ in how they share that climate.

A new study by a Wits University scientist has overturned a long-standing hypothesis about plant speciation (the formation of new and distinct species in the course of evolution), suggesting that agricultural crops could be more vulnerable to climate change than was previously thought.

Unlike humans and most other animals, plants can tolerate multiple copies of their genes – in fact some plants, called polyploids, can have more than 50 duplicates of their genomes in every cell. Scientists used to think that these extra genomes helped polyploids survive in new and extreme environments, like the tropics or the Arctic, promoting the establishment of .

However, when Dr Kelsey Glennon of the Wits School of Animal, Plant and Environmental Sciences and a team of international collaborators tested this long-standing hypothesis, they found that, more often than not, polyploids shared the same habitats as their close relatives with normal genome sizes.

"This means that environmental factors do not play a large role in the establishment of new plant species and that maybe other factors, like the ability to spread your seeds to new locations with similar habitats, are more important," said Glennon.

"This study has implications for agriculture and because all of our important crops are polyploids and they might not be much better at adapting to changing climate than their wild relatives if they live in similar climates."

Glennon's study also provides an alternative explanation for why plants are so diverse in places like the Cape where the climate has been stable for hundreds of thousands of years. Although her study examined from North America and Europe only, she is looking forward to testing her hypotheses using South African plants.

Glennon's paper has been published in Ecology Letters, a flagship journal for broad-scale ecology research.

Explore further: Genome duplication aids plant's survival in saline soils

Related Stories

New plant species a microcosm of biodiversity

February 7, 2014

Biologists working in the Andes mountains of Ecuador have described a new plant species, a wild relative of black pepper, that is in itself a mini biodiversity hotspot. The new species, Piper kelleyi, is the sole home of ...

World's first mapping of America's rare plants

October 17, 2013

The results of a major international research project show that climate stability plays a crucial role in the distribution of plants on Earth. Rare species in the Americas are restricted to areas of California, Mexico, the ...

Recommended for you

Mammal long thought extinct in Australia resurfaces

December 15, 2017

A crest-tailed mulgara, a small carnivorous marsupial known only from fossilised bone fragments and presumed extinct in NSW for more than century, has been discovered in Sturt National Park north-west of Tibooburra.

Finding a lethal parasite's vulnerabilities

December 15, 2017

An estimated 100 million people around the world are infected with Strongyloides stercoralis, a parasitic nematode, yet it's likely that many don't know it. The infection can persist for years, usually only causing mild symptoms. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.