A paradigm-shifting step in stem cell research

December 31, 2013 by John Steeno, University of Wisconsin-Madison

(Phys.org) —A team of engineers at the University of Wisconsin-Madison has created a process that may revolutionize stem cell research. The process, outlined in a paper published in Stem Cells on December 19, 2013, will improve the state of the art in the creation of synthetic neural stem cells for use in central nervous system research. 

Human pluripotent have been used to reproduce nervous-system cells for use in the study and treatment of and of diseases such as Parkinson's and Huntington's. Currently, most stem cells used in research have been cultured on mouse embryonic fibroblasts (MEFs), which require a high level of expertise to prepare. The expertise required has made scalability a problem, as there can be slight differences in the cells used from laboratory to laboratory, and the cells maintained on MEFs are also undesirable for clinical applications.

Removing the high level of required skill—and thereby increasing the translatability of stem cell technology—is one of the main reasons why Randolph Ashton, a UW-Madison assistant professor of biomedical engineering and co-author of the paper, wanted to create a new protocol. 

Rather than culturing stem cells on MEFs, the new process uses two simple chemical cocktails to accomplish the same task. The first mixture, developed by John D. MacArthur Professor of Medicine James Thomson in the Morgridge Institute for Research, is used to maintain the stem cells in the absence of MEFs. The second cocktail allows researchers to push the stem cells toward a neural fate with very high efficiency. 

These chemical mixtures help to ensure the consistency of the entire process and give researchers a better understanding of what is driving the differentiation of the cells. "Once you remove some of the confounding factors, you have better control and more freedom and flexibility in terms of pushing the into what you want them to become," says Ashton.

Streamlining the process also removes some of the ambiguities that were inserted with MEFs. And Ashton hopes the straightforward protocol will enable other labs to engage in more complex tissue engineering. "Ours is the simplest, fastest and most efficient way to generate these types of cells," he says. 

Ethan Lippmann, a postdoctoral fellow at the Wisconsin Institute for Discovery and co-author on the paper, says the major impact of this new process on other labs will be two-fold. "It's incredibly easy and simplified, and you can buy everything 'off the shelf,' so to speak," he says. "This should allow other researchers who are not stem cell experts to adapt this protocol to their own labs. We also want people to look at the things we do, as we generate more specialized neural cell types using this protocol, and feel comfortable that they can be translated to a clinic."

Explore further: HEXIM1 regulatory protein induces human pluripotent stem cells to adopt more specialized cell fate

Related Stories

A step closer to muscle regeneration

December 10, 2013

(Medical Xpress)—Muscle cell therapy to treat some degenerative diseases, including Muscular Dystrophy, could be a more realistic clinical possibility, now that scientists have found a way to isolate muscle cells from embryonic ...

Why stem cells need to stick with their friends

November 7, 2013

Scientists at University of Copenhagen and University of Edinburgh have identified a core set of functionally relevant factors which regulates embryonic stem cells' ability for self-renewal. A key aspect is the protein Oct4 ...

Recommended for you

Breakthrough study shows how plants sense the world

January 19, 2018

Plants lack eyes and ears, but they can still see, hear, smell and respond to environmental cues and dangers—especially to virulent pathogens. They do this with the aid of hundreds of membrane proteins that can sense microbes ...

Microbial communities demonstrate high turnover

January 19, 2018

When Mark Twain famously said "If you don't like the weather in New England, just wait a few minutes," he probably didn't anticipate MIT researchers would apply his remark to their microbial research. But a new study does ...

Hot weather is bad news for bird sperm

January 19, 2018

A new study led by Macquarie University and spanning Sydney and Oslo has shown that exposure to extreme temperatures, such as those experienced during heatwave conditions, significantly reduces sperm quality in zebra finches, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 01, 2014
More Information: New Book on Stem Cell Transplants.

TRANSPLANT HANDBOOK FOR PATIENTS: Replacing #Stem Cells in Your Bone #Marrow.
By a 75-year old author, in Day +154 since his transplant, who is setting records for recovery.
This book helps the #cancer patient, caregiver, and family to understand the #stem cell #transplant journey.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.