Genetic divergence between the fish pathogens

December 5, 2013
Electronic micrograph of E. Tarda (now E. piscicida) LTB4 strain after negative staining Credit: Lan et al.

Edwardsiella tarda is a bacterium that can infect a number of animal species and also humans. Edwardsiellosis is one of the most serious systemic bacterial diseases in fish, resulting in substantial losses in the fish farming industry all over the world.

Takele Abayneh Tefera has developed effective molecular tools for the identification and characterization of different of Edwardsiella. He developed a new TaqMan real-time and conventional PCR analysis for this purpose and then evaluated it in relation to the Loop Mediated Isothermal Amplification (LAMP) analysis. For the first time, he also used the Multi-locus Sequence Analysis (MLSA) for the typing and characterization of E. tarda, isolated from different sources. This is a useful tool for detecting sources of infection and for understanding the epidemiological relationship between isolates from the environment, fish, livestock and humans.

The MLSA analysis showed that there exist geographic and host-specific genotypes of the E. tarda. Bacterial strains from fish were found to be only distantly related to E. tarda type strain and other strains from humans. Furthermore, genetic and phenotypic analyses also confirmed a genetic divergence between these strains of bacteria.

The findings of this study indicate that the fish pathogenic strain has been wrongly classified as E. tarda. Phenotypic characterization by means of a number of biochemical tests and pathogenity studies on zebra fish identified phenotypic markers which also differentiate fish from the reference bacterium.

Based on genetic and phenotypic differences, Tefera and his colleagues have proposed that fish pathogenic Edwardsiella strains previously classified as Edwardsiella tarda should now be classified as a : Edwardsiella piscicida. The new species has now been approved and incorporated into prokaryotic nomenclature.

Tefera's work also led to the introduction of a new Multi-locus Variable Number Tandem Repeat Analysis (MLVA) for the further typing of different isolates of the new species of bacteria Edwardsiella piscicida. Employing this method proved to be more sensitive than the MLSA-analysis when it came to investigating outbreaks of E. piscicida.

Takele Abayneh Tefera defended his doctoral research on 26th November 2013 at the Norwegian School of Veterinary Science with a thesis entitled: "Fish pathogenic Edwardsiella tarda: Evaluation of molecular identification methods and characterization of a novel species."

Explore further: Mycobacteriosis in fish

Related Stories

Mycobacteriosis in fish

January 15, 2013

Mycobacteriosis in fish is a disease that is difficult to detect and therefore often underdiagnosed. For the same reason, information about the effects of this disease on the fish farming industry has been limited.

New models predict where E. coli strains will thrive

November 18, 2013

Bioengineers at the University of California, San Diego have used the genomic sequences of 55 E. coli strains to reconstruct the metabolic repertoire for each strain. Surprisingly, these reconstructions do an excellent job ...

Recommended for you

Histone 1, the guardian of genome stability

August 18, 2017

Scientists headed by Ferran Azorín at the Institute for Research in Biomedicine (IRB Barcelona) have discovered why histone 1 is a major protection factor against genomic instability and a vital protein. Their study of the ...

New gene catalog of ocean microbiome reveals surprises

August 17, 2017

Microbes dominate the planet, especially the ocean, and help support the entire marine food web. In a recent report published in Nature Microbiology, University of Hawai'i at Mānoa (UHM) oceanography professor Ed DeLong ...

Researchers describe gene that makes large, plump tomatoes

August 17, 2017

Farmers can grow big, juicy tomatoes thanks to a mutation in the Cell Size Regulator gene that occurred during the tomato domestication process. Esther van der Knaap of the University of Georgia, Athens and colleagues describe ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.