Dual catalysts help synthesize alpha-olefins into new organic compounds

December 19, 2013, Boston College

Boston College chemists have developed a new chemical synthesis methodology that converts chemicals known as alpha-olefins into new organic compounds. By combining a pair of catalytic reactions in sequence, the researchers converted inexpensive and plentiful chemicals into new boron-containing organic compounds prized by researchers.

The team reports in the current online edition of the journal Nature that their advance employed two – one developed in their Boston College lab and another developed by colleagues at MIT. Combining the two reactions in a sequential process resulted in an unprecedented reaction that offered high levels of purity and selectivity, according to the lead researcher, Boston College Professor of Chemistry James P. Morken.

"We developed the first reaction to convert alpha-olefins into new compounds," said Morken. "The second reaction is a palladium-catalyzed reaction that uses a catalyst developed by a team at MIT. Together, these two reactions result in an unprecedented reaction process that works extremely well."

Organic chemists face the challenge of developing new compounds, such as medicines and materials, in a more efficient manner. A driving influence is to produce innovative compounds through simpler, more efficient processes that generate less waste and reduce costs, in particular through the use of readily available chemicals.

The team was surprised by the high level of reactivity in the boron-containing compounds from the first reaction, Morken said. The findings considerably expand the applications of alpha-olefins, a group of distinguished by having a double bond at the primary, or alpha, position of their structure. While alpha-olefins are naturally occurring feedstocks that are usually converted into plastics, the increased reactivity that results from adding two boron atoms makes them suitable for wider range of research applications.

Morken said the new methodology should allow for the rapid and efficient production of important compounds from raw chemical feedstocks. As an example, the team used the new process to convert propene gas into phenethylamines, which are an important class of therapeutics, Morken said. In another application, the team used this new method of catalytic reactions to convert another alpha-olefin into pregabalin, which has been used in a variety of pain management drugs.

Morken conducted the research with doctoral students Scott Mlynarski and Chris Schuster, both co-authors of the Nature report.

Explore further: Unexpected bond formation of chemical element boron

Related Stories

Unexpected bond formation of chemical element boron

November 20, 2013

In synthetic chemistry, so-called element-element bonding can be systematically exploited to assemble small building blocks to obtain structures that are more complex than the "starting material" and can be used for the resource-saving ...

Sustainable new catalysts fueled by a single proton

February 13, 2013

Chemists at Boston College have designed a new class of catalysts triggered by the charge of a single proton, the team reports in the most recent edition of the journal Nature. The simple organic molecules offer a sustainable ...

Cheap metals can be used to make products from petroleum

October 21, 2013

The ancient alchemists sought to transform base metals, like lead, into precious gold. Now a new process developed at the University of Illinois at Chicago suggests that base metals may be worth more than their weight in ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.