Monolithic ultrasonic integrated circuits

November 20, 2013

Ultrasonography based on traditional bulk piezoelectric transducers has been established as an inexpensive and safe medical imaging modality. By borrowing techniques from the microelectronics industry, the performance of the ultrasound transducer can be dramatically improved and new applications become feasible. Dr. Arman Hajati and his co-workers from Fujifilm Dimatix (FDMX), Santa Clara CA, have developed a high performance ultrasound transducer technology. This novel transducer technology is based on an array of three-dimensional micromachined semi-ellipsoidal piezoelectric domes made of the high-quality PZNT thin film developed at FDMX. This work is published in the journal Applied Physics Letters on November 11, 2013.

Thin-film processing techniques have enabled highly-customizable (IC) containing hundreds to billions of components with complex and powerful functionalities in various fields. Electronics, photonics and sensors have benefited from large-scale integration technologies and have enabled solutions which were not imaginable with discrete circuits. Nevertheless, acoustic devices have not benefited from this trend of integration. FDMX is proposing an acoustic analog of a monolithic microwave integrated circuit (MMIC) as the alternative in which various micromachined acoustic resonators can be coupled to synthesize the desired acoustic frequency response.

"We have built a musical instrument by building these tiny domes which act like the strings of a guitar or a harp," says Hajati, the principal investigator and the lead author of the paper. "Each dome gives you an acoustic note defined by its tension and size, again just like the strings of guitar or harp! We can compose a very rich melody by putting these extremely high pitch notes () together."

Analogous to IC technology, a monolithic integrated ultrasonic circuit (MUIC) is tailored by lithography with four main advantages over bulk piezoelectric transducers: ease of integration, performance, customization, and miniaturization capability. Three dimensional semi-ellipsoidal piezoelectric membranes were introduced as the highly customizable building block of the MUIC. The testing results of five different devices which were fabricated on the same wafer were presented to demonstrate the performance and customization capability of this technology.

MUIC can be implemented as a desirable solution in various medical imaging and therapeutic applications. Exploiting its small form-factor, high sensitivity, low voltage level and low impedance well matched to micro-coaxial cables, the transducer can be incorporated into various high performance miniaturized ultrasound catheters such as EUS, TEE, ICE and Intravascular Ultrasound (IVUS) catheters. Besides in-vivo imaging, this new technology can enable high performance, low-power, low-voltage and portable 3D/4D sonography and an affordable 3D Ultrasound Stethoscope. Furthermore, it is well suited as a miniaturized electronically-steering phased-array probe for HIFU ultrasound endotherapy. Finally, the MUIC can be easily integrated with other functionalities such as low-voltage CMOS electronics, optical components and other MEMS and sensor technologies using 3D Wafer-Level-Packaging (WLP) techniques, enabling unforeseen applications.

Explore further: Wireless ultrasound transducers help physicians

More information: Arman Hajati, Dimitre Latev, Deane Gardner, Mats Ottosson, Darren Imai, Marc Torrey, Martin Schoeppler, Monolithic Ultrasonic Integrated Circuits based on Micromachined Semi-Ellipsoidal Piezoelectric Domes. Applied Physics Letters, 103(20), 2013. dx.doi.org/10.1063/1.4831988

Related Stories

Wireless ultrasound transducers help physicians

May 20, 2013

Siemens has presented the world's first ultrasound system with wireless transducers. The system's transducers, which can be easily operated with one hand, transmit ultrasound images via radio waves to the screen on the base ...

Designing an acoustic diode

November 1, 2013

Most people know about ultrasound through its role in prenatal imaging: those grainy, grey outlines of junior constructed from reflected sound waves. A new technology called an "acoustic diode," envisioned by researchers ...

Improving ultrasound imaging

March 5, 2013

Ultrasound technology could soon experience a significant upgrade that would enable it to produce high-quality, high-resolution images, thanks to the development of a new key material by a team of researchers that includes ...

Computer model improves ultrasound image

November 4, 2008

Doctors use diagnostic sonography or ultrasound to visualise organs and other internal structures of the human body. Dutch researcher Koos Huijssen has developed a computer model that can predict the sound transmission of ...

Recommended for you

Google, EU dig in for long war

July 20, 2017

Google and the EU are gearing up for a battle that could last years, with the Silicon Valley behemoth facing a relentless challenge to its ambition to expand beyond search results.

Strengthening 3-D printed parts for real-world use

July 20, 2017

From aerospace and defense to digital dentistry and medical devices, 3-D printed parts are used in a variety of industries. Currently, 3-D printed parts are very fragile and only used in the prototyping phase of materials ...

Swimming robot probes Fukushima reactor to find melted fuel

July 19, 2017

An underwater robot entered a badly damaged reactor at Japan's crippled Fukushima nuclear plant Wednesday, capturing images of the harsh impact of its meltdown, including key structures that were torn and knocked out of place.

Microsoft cloud to help Baidu self-driving car effort

July 19, 2017

Microsoft's cloud computing platform will be used outside China for collaboration by members of a self-driving car alliance formed by Chinese internet search giant Baidu, the companies announced on Tuesday.

Making lab equipment on the cheap

July 18, 2017

Laboratory equipment is one of the largest cost factors in neuroscience. However, many experiments can be performed with good results using self-assembled setups involving 3-D printed components and self-programmed electronics. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.