Another beautiful helix for biology, this time reminiscent of a parking garage

Another beautiful helix for biology, this time reminiscent of a parking garage
The endoplasmic reticulum (ER) is the protein-making factory within cells consisting of tightly stacked sheets of membrane studded with the molecules that make proteins. In a study published July 18th by Cell Press in the journal Cell, researchers have refined a new microscopy imaging method to visualize exactly how the ER sheets are stacked, revealing that the 3D structure of the sheets resembles a parking garage with helical ramps connecting the different levels. This structure allows for the dense packing of ER sheets, maximizing the amount of space available for protein synthesis within the small confines of a cell. Credit: Cell, Terasaki et al.

The endoplasmic reticulum (ER) is the protein-making factory within cells consisting of tightly stacked sheets of membrane studded with the molecules that make proteins. In a study published July 18th by Cell Press in the journal Cell, researchers have refined a new microscopy imaging method to visualize exactly how the ER sheets are stacked, revealing that the 3D structure of the sheets resembles a parking garage with helical ramps connecting the different levels. This structure allows for the dense packing of ER sheets, maximizing the amount of space available for protein synthesis within the small confines of a cell.

"The geometry of the ER is so complex that its details have never been fully described, even now, 60 years after its discovery," says study author Mark Terasaki of the University of Connecticut Health Center. "Our findings are likely to lead to new insights into the functioning of this important organelle."

Jeff Lichtman and colleagues at Harvard developed an improved technique for staining ER membrane sheets that allowed them to visualize the 3D structure in unprecedented detail. Applying this new method to mouse neurons and cells, Terasaki and his colleague Art Hand, along with Tom Rapoport of Harvard Medical School, discovered that ER sheets form a continuous membrane system consisting of stacked levels connected by a well-known called the helicoid, which resembles a spiral staircase.

  • Another beautiful helix for biology, this time reminiscent of a parking garage
    The endoplasmic reticulum (ER) is the protein-making factory within cells consisting of tightly stacked sheets of membrane studded with the molecules that make proteins. In a study published July 18th by Cell Press in the journal Cell, researchers have refined a new microscopy imaging method to visualize exactly how the ER sheets are stacked, revealing that the 3D structure of the sheets resembles a parking garage with helical ramps connecting the different levels. This structure allows for the dense packing of ER sheets, maximizing the amount of space available for protein synthesis within the small confines of a cell. Credit: Cell, Terasaki et al.
  • Another beautiful helix for biology, this time reminiscent of a parking garage
    The endoplasmic reticulum (ER) is the protein-making factory within cells consisting of tightly stacked sheets of membrane studded with the molecules that make proteins. In a study published July 18th by Cell Press in the journal Cell, researchers have refined a new microscopy imaging method to visualize exactly how the ER sheets are stacked, revealing that the 3D structure of the sheets resembles a parking garage with helical ramps connecting the different levels. This structure allows for the dense packing of ER sheets, maximizing the amount of space available for protein synthesis within the small confines of a cell. Credit: Cell, Terasaki et al.

Moreover, a theoretical model developed by collaborators Michael Kozlov and Tom Shemesh revealed that this "parking garage" structure optimizes the dense packing of ER sheets and thus maximizes the number of protein-synthesizing molecules called ribosomes within the restricted space of a cell. When a cell needs to secrete more proteins, it can reduce the distances between sheets to pack even more membrane into the same space. Think of it as a parking garage that can add more levels as it gets full. "The theory explains that this structure is seen in nature because it maximizes the cell's ability to make a large number of proteins while minimizing the energetic cost to the cell," Rapoport says. "The paper is an excellent example for the role that theory can play in biology."


Explore further

Researchers decipher an alternative mechanism of intracellular protein trafficking

More information: Cell, DOI: 10.1016/j.cell.2013.06.031
Journal information: Cell

Provided by Cell Press
Citation: Another beautiful helix for biology, this time reminiscent of a parking garage (2013, July 18) retrieved 19 September 2020 from https://phys.org/news/2013-07-beautiful-helix-biology-reminiscent-garage.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments