Metamaterial flexible sheets could transform optics

June 6, 2013
(a) Photograph of an ultrathin (72 µm thick) metamaterial sample.

(Phys.org) —New ultrathin, planar, lightweight, and broadband polarimetric photonic devices and optics could result from recent research by a team of Los Alamos National Laboratory scientists. The advances would boost security screening systems, infrared thermal cameras, energy harvesting, and radar systems.

This development is a key step toward replacing bulky conventional optics with flexible sheets that are about the thickness of a human hair and weighing a fraction of an ounce. The advance is in the design of artificially created materials, called , that give scientists new levels of control over light wavelengths.

The research was reported online in Science magazine, "Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction." The team demonstrated broadband, high-performance linear polarization conversion using ultrathin planar metamaterials, enabling possible applications in the terahertz (THz) frequency regime. Their design can be scaled to other frequency ranges from the microwave through infrared.

Polarization is one of the basic properties of electromagnetic waves, describing the direction of the electric field oscillation, and thus conveying valuable information in signal transmission and sensitive measurements.

"Conventional methods for advanced polarization control impose very demanding requirements on material properties and , but they attain only limited performance," said Hou-Tong Chen, the senior researcher on the project.

Metamaterial-based polarimetric devices are particularly attractive in the terahertz frequency range due to the lack of suitable natural materials for THz applications. Currently available designs suffer from either very limited bandwidth or high losses. The Los Alamos designs further enable the near-perfect realization of the generalized laws of reflection/refraction. According to the researchers, this can be exploited to make flat lenses, prisms, and other optical elements in a fashion very different from the curved, conventional designs that we use in our daily life.

Explore further: Researchers develop metamaterials able to control spread of light

More information: Grady, N. et al. Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction, Science, published online in Science Express, May 16, DOI: 10.1126/science.1235399.

Related Stories

Team develops new metamaterial device

February 24, 2009

An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according ...

Hiding in plain sight

March 5, 2013

A couple years ago, researchers introduced a new material that they said could make any object invisible to both radar and the human eye. Invisibility cloaking would have a major impact on defense technology, they explained, ...

'Metasurfaces' to usher in new optical technologies

March 14, 2013

(Phys.org) —New optical technologies using "metasurfaces" capable of the ultra-efficient control of light are nearing commercialization, with potential applications including advanced solar cells, computers, telecommunications, ...

Recommended for you

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Phase transition discovery opens the door to new electronics

January 16, 2017

A group of European scientists led by researchers at TU Delft has discovered how phase transitions propagate throughout materials called nickelates. The discovery improves our understanding of these novel materials, which ...

Electron diffraction locates hydrogen atoms

January 13, 2017

Diffraction-based analytical methods are widely used in laboratories, but they struggle to study samples that are smaller than a micrometer in size. Researchers from the Laboratoire de cristallographie et sciences des matériaux ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.