Finding the missing genes in hormone-biosynthesis pathway hints at subtle control of growth in rice

May 2, 2013
Figure 1: Mutant rice plants without the CYP714B1 and CYP714B2 genes (right) show enhanced uppermost node lengths, indicating that these genes are negative regulators of growth. Credit: 2013 H. Magome et al.

The plant hormones known as gibberellins (GAs) are growth promoters that are involved in a wide range of processes from seed germination to flower development. The details of the biosynthesis of GAs, however, have yet to be fully clarified. Hiroshi Magome and colleagues of the Gene Discovery Research Group at the RIKEN Center for Sustainable Resource Science have now identified genes for two 'cytochrome P450' enzymes involved in GA biosynthesis in rice.

Magome's team found that mutant without the CYP714B1 and CYP714B2 genes had lengthened uppermost internodes (Fig. 1), indicating that these two genes are negative regulators of growth. Overexpression of these genes in Arabidopsis, on the other hand, resulted in semi-dwarf plants.

Certain in GA molecules may be linked to either a hydrogen (H) or hydroxyl group (OH). At the 13th carbon, the ratio between these forms is determined by GA 13-oxidase enzymes, which hydroxylate the –H group to an –OH. CYP714B1 and CYP714B2 are the first GA 13-oxidase genes to be characterized, and represent a key missing link in the GA-biosynthesis pathway.

In rice mutants without the CYP714B1 and CYP714B2 genes, levels of 13-OH GAs were reduced and 13-H GAs were increased, indicating that these two genes have a major role in GA 13-hydroxylation in rice. The researchers also found that exogenous application of bioactive GAs up-regulates expression of both genes, representing evidence of a homeostatic mechanism regulating GA levels in rice.

Functional analyses applying recombinant CYP714B1 and CYP714B2 proteins to a variety of GA substrates enabled the team to identify the very step in GA synthesis at which the proteins act: hydroxylation of GA12 to form GA53. In flowering plants, GA12 is a forerunner of GA4, a highly bioactive GA, while GA53 is a precursor of GA1, which is only weakly active. Growth repression by CYP714B1 and CYP714B2 is therefore caused by of GA12 resulting, downstream, in the production of a less-active GA.

In rice, the weakly active GA1 is the predominant form of GA in most tissues. Magome suggests that this counterintuitive observation might indicate tight regulation of growth through minute modifications in weakly active GAs, in addition to the dramatic changes facilitated by the more active GA4. This combined approach could allow plants to fine-tune their growth to suit their circumstances. Moderate suppression of plant growth, as provided by CYP714B1 and CYP714B2, is also associated with improved crop yields. "Our findings show promise for the development of new plant growth control technologies," says Magome.

Explore further: Discovery identifies elaborate G-protein network in plants

More information: Magome, H. et al. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proceedings of the National Academy of Sciences 110, 1947–1952 (2013).

Related Stories

Discovery identifies elaborate G-protein network in plants

April 21, 2011

The most elaborate heterotrimeric G-protein network known to date in the plant kingdom has been identified by Dr. Sona Pandey, principal investigator at the Danforth Plant Science Center. The results of this research are ...

Gallium: A new antibacterial agent?

March 16, 2007

New antibacterial strategies are needed because more and more bacteria are antibiotic resistant and because antibiotics are not effective at eradicating chronic bacterial infections. One approach to developing new antibacterial ...

Antagonistic genes control rice growth

December 15, 2009

Scientists at the Carnegie Institution, with colleagues, have found that a plant steroid prompts two genes to battle each other—one suppresses the other to ensure that leaves grow normally in rice and the experimental plant ...

New DNA Tool Probes Rice Genome

October 21, 2008

( -- A new tool for investigating the rice genome has been developed by researchers at UC Davis led by Pamela Ronald, professor of plant pathology. The inexpensive, publicly-available rice DNA microarray covers ...

Recommended for you

Novel framework to infer microbial interactions

December 11, 2017

Inferring the underlying ecological networks of microbial communities is important to understanding their structure and responses to external stimuli. But it can be very challenging to make accurate network inferences. In ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.