Success in initializing and reading nuclear spins brings quantum computer a step closer

April 30, 2013, Linköping University

A quantum computer is controlled by the laws of quantum physics; it promises to perform complicated calculations, or search large amounts of data, at a speed that exceeds by far those that today's fastest supercomputers are capable of.

"You could say that a quantum computer can think several thoughts simultaneously, while a traditional computer thinks one thought at a time," says Weimin Chen, professor in the Division of Functional at the Department of Physics, at LiU, and one of the main authors of the article in Nature Communications.

A traditional computer stores, processes and sends all information in the form of bits, which can have a value of 1 or 0. But in the world of , at the nano- and atomic level, other rules prevail and a bit in a quantum computer – a qubit – can have any value between 1 and 0. A spin-based qubit makes use of the fact that and rotate around their own axes – they have a spin. They can rotate both clockwise and counterclockwise (equivalent to 1 and 0), and in both directions simultaneously (a mix of 1 and 0) – something that is completely unthinkable in the traditional, "classical" world.

An consists of both protons and neutrons, and the advantage of using the nuclear spin as a qubit is that the nucleus is well protected, and nearly impervious to unwanted electromagnetic disturbance, which is a condition for keeping the sensitive information in the qubit intact.

The first step in building a quantum computer is to assign each a well-defined value, either 1 or 0. Starting, or initiating, the spin-based qubits then requires all the atomic nuclei to spin in the same direction, either 'up' or 'down' (clockwise or counterclockwise). The most common method for polarising nuclear spin is called dynamic nuclear polarisation; this means that the electrons' spin simply influences the nucleus to spin in the same direction. The method requires strongly spin polarised electrons and functions superbly at lower temperatures. Dynamic nuclear polarisation via conduction electrons has, however, not yet been demonstrated at room temperature – which is crucial for the method to be useful in practice for the development of quantum computers. The main problem is that the spin orientation in the electrons can easily be lost at room temperature, since it is sensitive to disruptions from its surroundings.

Linköping University researchers Yuttapoom Puttisong, Xingjun Wang, Irina Buyanova and Weimin Chen, together with their German and American colleagues, have now discovered a way of getting around this problem.

Back in 2009, Chen and his research group presented a spin filter that works at room temperature; the filter lets through electrons that have the desired spin direction and screens out the others.

With the help of the spin filter, they have now succeeded in producing a flow of free electrons with a given spin in a material – in this case GaNAs (gallium nitrogen arsenide). The spin polarisation is so strong that it creates a strong polarisation of the nuclear spin in extra Ga atoms that are added as defects in the material – and this takes place at room temperature. This is the first time that strong nuclear spin polarisation of a defect atom in a solid is demonstrated at room temperature by spin-polarised conduction electrons.

"We prove experimentally that the measurable magnetic field from the nuclei, as well as the strong polarisation of the nuclear spins in the material at , comes from the dynamic polarisation of the nuclear spin in the extra added Ga atoms," says Chen.

The researchers have also shown that the polarisation of the happens very quickly – potentially in less than a nanosecond (one-billionth of a second).

The method proposed also has the advantage of making use of free electrons. This makes it possible to control the of the spin in the nucleus electrically; in this way the information lying in the spin can both be initiated and read.

Explore further: Important progress for spintronics: A spin amplifier to be used in room temperature

More information: Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor by Y. Puttisong, X. J. Wang, I.A. Buyanova, L. Geelhaar, H. Riechert, A.J. Ptak, C.W. Tu, and W.M. Chen. Nature Communications. 4: 1751 doi:10.1038/ncomms2776 (2013).

Related Stories

Subatomic quantum memory in diamond demonstrated

June 27, 2011

Physicists working at the University of California, Santa Barbara and the University of Konstanz in Germany have developed a breakthrough in the use of diamond in quantum physics, marking an important step toward quantum ...

A silicon platform for quantum computers

April 17, 2013

A team of Australian engineers at the University of New South Wales (UNSW) has demonstrated a quantum bit based on the nucleus of a single atom in silicon, promising dramatic improvements for data processing in ultra-powerful ...

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) May 01, 2013
A quantum computer is controlled by the laws of quantum physics; it promises to perform complicated calculations, or search large amounts of data, at a speed that exceeds by far those that today's fastest supercomputers are capable of.
Success in initializing and reading nuclear spins brings quantum computer a step closer

Maybe or maybe not, until we could understand the mystery of quantum mechanics! Here is an idea for such mechanics…

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.