Remnants of supernova explosion found in ancient magnetotactic bacteria

April 16, 2013 by John Hewitt, report

Credit: NASA
( —Back in 2004, German scientists discovered traces of supernova ejecta that had been deposited in the deep-sea ferromanganese crust of the pacific ocean. They dated the supernova event to 2.8 million years ago (Mya), using estimates from the decay of iron-60 radioisotope. They were also able to estimate the distance of the supernova event to 10 parsecs (pc) from our sun, based on the amount of iron-60 deposited. At the April 14th meeting of the American Physical Society, a Canadian scientist, Shawn Bishop, reported finding traces of iron-60 of supernova origin in the fossilized remains of a common bacteria. By accurately dating the sediment cores in which the samples were found, Bishop appears to have discovered the first biological signature of an ancient supernova event, and may even be able to link it to a specific exploding star.

Bishop analyzed sample cores from strata roughly 100,000 years apart within deposits from 1.7 to 3.3 Mya. Iron-60 is not a product of any processes occurring here on earth, so any supply of it can be assumed to from a non-terrestrial source. Bishop was able to extract out all the iron-60 of , and quantify it with a . The amounts found were small, but they were enough to reliably date the sample to a period around 2.2 Mya. Other researchers, peripheral to the project, were then able to suggest a possible candidate star that dates to this period may lie in the Scorpius-Centaurus stellar association, roughly 130 pcs (424 light-years) from the sun.

Iron-60 has a half-life of 2.6 million years, and makes an ideal clock for dating deposits on this timescale. It undergoes beta decay to form cobalt-60. A likely source for the iron concentrations in the deep-sea cores could be . These creatures incorporate crystals of magnetite (Fe3O4) in the form of long chains inside specialized organelles called magnetosomes. These organelles are used to sense the earth's magnetic field and possibly navigate in response to it. Magnetite-containing bacteria are today usually found in transition zones where oxygen-rich waters meet anoxic waters.

These discoveries paint a dramatic scene of supernova explosions raining down radioactive debris on the ancient earth. These deposits then filtered through the water where they also got incorporated into various iron-sulfide reactions, or manganese nodules still mined today. Many people might remember Howard Hughes' Glomar Explorer project, and the dramatic CIA efforts to find the wreck of the Soviet K-129 nuclear submarine. Mining the iron-rich manganese nodules was the convenient alibi the Glomar explorer used while it searched for the secret sub. Exploration of the deep links between the earth and its cosmic neighbors will undoubtedly continue to give tremendous insight into events both here and beyond.

Explore further: Exploding star missing from formation of solar system

More information: Abstract: X8.00002 : Search for Supernova 60Fe in the Earth's Fossil Record, Bulletin of the American Physical Society,

Approximately 2.8 Myr before the present our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of 60Fe in a deep-sea ferromanganese crust. The signature for this supernova event should also reside in magnetite (Fe3O4) magnetofossils produced by magnetotactic bacteria extant at the time of the Earth- supernova interaction, provided the bacteria preferentially uptake iron from fine-grained iron oxides and ferric hydroxides. Using empirically derived microfossil concentrations in a deep-sea drill core, we deduce a conservative estimate of the 60Fe fraction as 60Fe/Fe =3.6×10−15. This value sits comfortably within the sensitivity limit of present accelerator mass spectrometry (AMS) capabilities. This talk will detail the present status of our 60Fe AMS search in magnetofossils and (possibly) show our initial results.

via Nature News

Related Stories

Fingering the culprit that polluted the Solar System

August 2, 2012

( -- For decades it has been thought that a shock wave from a supernova explosion triggered the formation of our Solar System. According to this theory, the shock wave also injected material from the exploding star ...

Radioactive decay of titanium powers supernova remnant

October 17, 2012

(—The first direct detection of radioactive titanium associated with supernova remnant 1987A has been made by ESA's Integral space observatory. The radioactive decay has likely been powering the glowing remnant ...

The earliest blacksmiths may have been bacteria

October 16, 2008

( -- Talk about a Cold Case. This mystery goes back to when there was no oxygen on the planet and bacteria were the most sophisticated life form. But Kurt Konhauser holds a clue to answering some ancient questions. ...

Solution to ancient rock puzzle posited

April 27, 2012

A superplume, or massive episode of volcanic eruptions that related to extensive melting of the Earth's mantle, could explain the puzzling reappearance of major iron formations long after the rise in atmospheric oxygen about ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

LMC S154 is a symbiotic recurrent nova, study suggests

February 21, 2019

Astronomers have conducted observations of a symbiotic star in the Large Magellanic Cloud (LMC), known as LMC S154, which provide new insights about the nature of this object. Results of these observations, presented in a ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 16, 2013
On what basis did they calculate the velocity of the ejecta? Every supernova we observe in nature is expanding at a different velocity, some 2 to 10 times faster than others...

Article also has a typo in it, as "10 parsecs" appears to be missing the "3" which should have been "130 parsecs" in the bold caption.
5 / 5 (1) Apr 16, 2013
Old study in 2004 was 10pc, newer student was different event, estimated at 130pc
not rated yet Apr 16, 2013
Surely, the mars explorers can find similar material near the surface of Mars.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.