Blue ruthenium dimer catalysis for hydrogen generation

April 16, 2013
Key intermediates in the water oxidation catalytic cycle of the blue dimer characterized by x-ray spectroscopy. Optimization of the reactivity toward water (purple arrow) and oxidation of the resulting peroxo-intermediate (blue arrow) are needed for improved catalytic activity.

( —Photosynthetic water oxidation is a fundamental process in the biosphere that results in the sunlight-driven formation of O2 from water. Biological photosynthesis encompasses a series of complicated processes involving several transition states and intermediates that scientists continue to investigate. Mimicking this reaction in a man-made device will allow for sunlight-to-chemical energy conversion, with water providing electrons and protons for the formation of oxygen and reduced chemicals, a process best suited for sustainable and clean generation of H2. The first synthetic catalyst designed to mimic the portion of biological photosynthesis involved in water oxidation, i.e., the catalyzed evolution of O2 from H2O, was the ruthenium-based compound commonly referred to as "blue dimer" (BD).

Although the water-oxidizing capabilities of blue dimer were first reported around three decades ago, several aspects of this catalytic process remained hidden. Recently, scientists utilizing a variety of to probe the catalysis process, including x-ray absorption spectroscopy performed at X-ray Science Division beamline 20-BM at the U.S. Department of Energy Office of Science's Advanced Photon Source at Argonne National Laboratory. Their results published in the Journal of the American Chemical Society report progress in revealing previously unknown mechanistic details about BD's water oxidation reaction, which may in the not-too-distant future result in cost-effect, practical, and sustainable alternative energy sources.

Blue dimer contains two ruthenium (Ru) atoms bound together by a single . Each Ru atom also forms bonds with a ligand. The ligands are composed of linked pyridine rings, structurally very similar to the simple benzene ring (C6H6). The two ruthenium atoms can exhibit different . The chemical formula of blue dimer, cis,cis-[(bpy)2(H2O) RuIIIORuIII(OH2)(bpy)2]4+ (where "bpy" is 2,2-bipyridine), indicates that the two ruthenium atoms are in the [3,3] oxidation state. A water molecule is attached to each Ru atom in the [3,3] state.

The researchers from Purdue University, the University of North Carolina at Chapel Hill, and Southern Federal University (Russia) monitored the catalytic cycle of BD via stopped-flow ultraviolet-visible spectroscopy with millisecond precision, electron paramagnetic resonance (EPR), resonance Raman spectroscopy, and x-ray (XAS). Use of techniques with high sensitivity to the electronic states of molecules, namely EPR and XAS, was crucial in determining the electronic requirements of the water oxidation process. Extended x-ray absorption fine structure (EXAFS) measurements allowed determination of bond distances. This research identified for the first time structural details of two short-lived intermediates involved in the BD catalytic cycle, one reactive towards the formation of the O-O bond and other, the product of this reaction (peroxo-intermediate).

The experimental results revealed new aspects about the intermediates and time frames utilized by the BD catalyst to oxidize water. Research shows that under studied conditions, and in spite of fast reaction with water, evolution of oxygen lagged behind. This was attributed to stabilization of the peroxo species. This new information should help the development of the next generation of synthetic catalysts from the reaction. These should form a highly oxidized state analogous to the RuV = O species with good reactivity toward water, and aid in the conversion of peroxo species resulting from this reaction. The researchers hope that their findings will ultimately lead to practical solutions in the quest to find a cost effect, practical, and sustainable .

Explore further: Efficient Catalysts for Making Oxygen for 'Artificial Photosynthesis'

More information: Moonshiram, D. et al. Structure and Electronic Configurations of the Intermediates of Water Oxidation in Blue Ruthenium Dimer Catalysis, J. Am. Chem. Soc. 134, 4625 (2012). DOI:10.1021/ja208636f

Related Stories

Solving mysterious enzyme structure

December 12, 2012

Scientists at the Max Planck Institute for Chemical Energy Conversion (MPI CEC) have solved a long-standing puzzle in photosynthesis research. With the aid of quantum chemistry they were able to provide unexpected insight ...

Working toward new energy with electrochemistry

August 20, 2007

In an effort to develop alternative energy sources such as fuel cells and solar fuel from “artificial” photosynthesis, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are taking a detailed ...

Scientists unlock some key secrets of photosynthesis

July 2, 2012

New research led by chemists in the Baruch '60 Center for Biochemical Solar Energy Research at Rensselaer Polytechnic Institute is seeking to detail the individual steps of highly efficient reactions that convert sunlight ...

Recommended for you

Technique enables adaptable 3-D printing

January 13, 2017

Three-dimensional printing technology makes it possible to rapidly manufacture objects by depositing layer upon layer of polymers in a precisely determined pattern. Once these objects are completed, the polymers that form ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.