Leading by the nose: Star-nosed mole reveals how mammals perceive touch, pain

January 30, 2013, Public Library of Science
This is a star-nosed mole. Credit: Kristin Gerhold and Diana Bautista

The most sensitive patch of mammalian skin known to us isn't human but on the star-shaped tip of the star-nosed mole's snout. Researchers studying this organ have found that the star has a higher proportion of touch-sensitive nerve endings than pain receptors, according to a study published January 30 in the open access journal PLOS ONE by Diana Bautista and colleagues from the University of California, Berkeley and Vanderbilt University.

Touch and pain are closely intertwined sensations, but very little is known about how these sensations are detected in our cells. In this study, the authors turned to a unique species for answers: the star-nosed mole. In addition to its distinction as the fastest-eating mammal known, the star-nosed mole also possesses one of the most sensitive tactile organs known in the . The star on its nose has the highest density of nerve endings known in any mammalian skin, with over 100,000 fibers in a patch of skin about 1 cm. in diameter. The authors found these nerve endings significantly enriched in neurons sensitive to light touch, with a lower proportion of neurons that detect and respond to pain.

Here is the citation: Gerhold KA, Pellegrino M, Tsunozaki M, Morita T, Leitch DB, et al. (2013) The Star-Nosed Mole Reveals Clues to the Molecular Basis of Mammalian Touch. PLoS ONE 8(1): e55001. doi:10.1371/journal.pone.0055001 Credit: Kenneth Catania

The novel touch and they identified in the star-nosed mole were also detected in in mice and humans, suggesting that these receptors are likely to be more common across other mammals as well. According to the authors, their results highlight how examining diverse and highly specialized species can reveal fundamental aspects of biology common across different animals. Lead author on the study Bautista says, "By studying the star-nosed mole we identified that may mediate touch and pain. These genes represent new potential targets for the development of much needed drugs and therapies to treat chronic pain."

Explore further: A scientist probes the origins of 'ouch!'

More information: Gerhold KA, Pellegrino M, Tsunozaki M, Morita T, Leitch DB, et al. (2013) The Star-Nosed Mole Reveals Clues to the Molecular Basis of Mammalian Touch. PLoS ONE 8(1): e55001. doi:10.1371/journal.pone.0055001

Related Stories

A scientist probes the origins of 'ouch!'

July 2, 2009

Skinning a knee, swallowing habanero salsa, and installing snow chains bare-handed might seem pretty different at first. But all have one thing in common -- they're guaranteed to hurt.

Naked mole-rats may hold clues to pain relief

September 22, 2012

Naked mole-rats evolved to thrive in an acidic environment that other mammals, including humans, would find intolerable. Researchers at the University of Illinois at Chicago report new findings as to how these rodents have ...

Pain and itch connected down deep

May 2, 2011

A new study of itch adds to growing evidence that the chemical signals that make us want to scratch are the same signals that make us wince in pain.

Cold feeling traced to source

December 18, 2007

For the first time, neuroscientists have visualized cold fibers – strands reaching from sensory neurons near the spinal cord to nerve endings in the skin tuned to sense different types of cold. The study and pictures appear ...

Recommended for you

Houseplants could one day monitor home health

July 20, 2018

In a perspective published in the July 20 issue of Science, Neal Stewart and his University of Tennessee coauthors explore the future of houseplants as aesthetically pleasing and functional sirens of home health.

Putting bacteria to work

July 20, 2018

The idea of bacteria as diverse, complex perceptive entities that can hunt prey in packs, remember past experiences and interact with the moods and perceptions of their human hosts sounds like the plot of some low-budget ...

LC10 – the neuron that tracks fruit flies

July 20, 2018

Many animals rely on vision to detect, locate, and track moving objects. Male Drosophila fruit flies primarily use visual cues to stay close to a female and to direct their courtship song towards her. Scientists from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.